Optimal. Leaf size=23 \[ \frac {64 (2+x)}{x^2 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {768+384 x+\left (-768+64 x+64 x^2\right ) \log \left (\frac {1}{3} (-3+x)\right )+\left (768-64 x-64 x^2\right ) \log (x)}{\left (3 x^3-x^4\right ) \log ^3\left (\frac {1}{3} (-3+x)\right )+\left (-9 x^3+3 x^4\right ) \log ^2\left (\frac {1}{3} (-3+x)\right ) \log (x)+\left (9 x^3-3 x^4\right ) \log \left (\frac {1}{3} (-3+x)\right ) \log ^2(x)+\left (-3 x^3+x^4\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64 \left (6 (2+x)+\left (-12+x+x^2\right ) \log \left (\frac {1}{3} (-3+x)\right )-\left (-12+x+x^2\right ) \log (x)\right )}{(3-x) x^3 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^3} \, dx\\ &=64 \int \frac {6 (2+x)+\left (-12+x+x^2\right ) \log \left (\frac {1}{3} (-3+x)\right )-\left (-12+x+x^2\right ) \log (x)}{(3-x) x^3 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^3} \, dx\\ &=64 \int \left (\frac {-4-x}{x^3 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2}-\frac {6 (2+x)}{(-3+x) x^3 (\log (-3+x)-\log (3 x))^3}\right ) \, dx\\ &=64 \int \frac {-4-x}{x^3 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2} \, dx-384 \int \frac {2+x}{(-3+x) x^3 (\log (-3+x)-\log (3 x))^3} \, dx\\ &=64 \int \left (-\frac {4}{x^3 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2}-\frac {1}{x^2 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2}\right ) \, dx-384 \int \left (\frac {5}{27 (-3+x) (\log (-3+x)-\log (3 x))^3}-\frac {2}{3 x^3 (\log (-3+x)-\log (3 x))^3}-\frac {5}{9 x^2 (\log (-3+x)-\log (3 x))^3}-\frac {5}{27 x (\log (-3+x)-\log (3 x))^3}\right ) \, dx\\ &=-\left (64 \int \frac {1}{x^2 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2} \, dx\right )-\frac {640}{9} \int \frac {1}{(-3+x) (\log (-3+x)-\log (3 x))^3} \, dx+\frac {640}{9} \int \frac {1}{x (\log (-3+x)-\log (3 x))^3} \, dx+\frac {640}{3} \int \frac {1}{x^2 (\log (-3+x)-\log (3 x))^3} \, dx-256 \int \frac {1}{x^3 \left (\log \left (\frac {1}{3} (-3+x)\right )-\log (x)\right )^2} \, dx+256 \int \frac {1}{x^3 (\log (-3+x)-\log (3 x))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 25, normalized size = 1.09 \begin {gather*} -\frac {64 (-2-x)}{x^2 \left (-\log \left (\frac {1}{3} (-3+x)\right )+\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 41, normalized size = 1.78 \begin {gather*} \frac {64 \, {\left (x + 2\right )}}{x^{2} \log \relax (x)^{2} - 2 \, x^{2} \log \relax (x) \log \left (\frac {1}{3} \, x - 1\right ) + x^{2} \log \left (\frac {1}{3} \, x - 1\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.45, size = 65, normalized size = 2.83 \begin {gather*} \frac {64 \, {\left (x + 2\right )}}{x^{2} \log \relax (3)^{2} - 2 \, x^{2} \log \relax (3) \log \left (x - 3\right ) + x^{2} \log \left (x - 3\right )^{2} + 2 \, x^{2} \log \relax (3) \log \relax (x) - 2 \, x^{2} \log \left (x - 3\right ) \log \relax (x) + x^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 0.96
method | result | size |
risch | \(\frac {64 x +128}{x^{2} \left (\ln \relax (x )-\ln \left (\frac {x}{3}-1\right )\right )^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 62, normalized size = 2.70 \begin {gather*} \frac {64 \, {\left (x + 2\right )}}{x^{2} \log \relax (3)^{2} + x^{2} \log \left (x - 3\right )^{2} + 2 \, x^{2} \log \relax (3) \log \relax (x) + x^{2} \log \relax (x)^{2} - 2 \, {\left (x^{2} \log \relax (3) + x^{2} \log \relax (x)\right )} \log \left (x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.80, size = 58, normalized size = 2.52 \begin {gather*} \frac {32\,\left (-x^2\,{\ln \left (\frac {x}{3}-1\right )}^2+2\,x^2\,\ln \left (\frac {x}{3}-1\right )\,\ln \relax (x)-x^2\,{\ln \relax (x)}^2+18\,x+36\right )}{9\,x^2\,{\left (\ln \left (\frac {x}{3}-1\right )-\ln \relax (x)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 39, normalized size = 1.70 \begin {gather*} \frac {64 x + 128}{x^{2} \log {\relax (x )}^{2} - 2 x^{2} \log {\relax (x )} \log {\left (\frac {x}{3} - 1 \right )} + x^{2} \log {\left (\frac {x}{3} - 1 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________