Optimal. Leaf size=29 \[ \frac {e^{\frac {1}{\log ^2\left (\left (3-2 x-(1+4 x)^2\right )^2\right )}}}{1-x} \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 95, normalized size of antiderivative = 3.28, number of steps used = 1, number of rules used = 1, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {2288} \begin {gather*} \frac {\left (-16 x^2+11 x+5\right ) \left (64 x^4+80 x^3+9 x^2-10 x+1\right ) e^{\frac {1}{\log ^2\left (256 x^4+320 x^3+36 x^2-40 x+4\right )}}}{\left (-128 x^3-120 x^2-9 x+5\right ) \left (-8 x^4+11 x^3+3 x^2-7 x+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{\frac {1}{\log ^2\left (4-40 x+36 x^2+320 x^3+256 x^4\right )}} \left (5+11 x-16 x^2\right ) \left (1-10 x+9 x^2+80 x^3+64 x^4\right )}{\left (5-9 x-120 x^2-128 x^3\right ) \left (1-7 x+3 x^2+11 x^3-8 x^4\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 26, normalized size = 0.90 \begin {gather*} -\frac {e^{\frac {1}{\log ^2\left (4 \left (-1+5 x+8 x^2\right )^2\right )}}}{-1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 31, normalized size = 1.07 \begin {gather*} -\frac {e^{\left (\frac {1}{\log \left (256 \, x^{4} + 320 \, x^{3} + 36 \, x^{2} - 40 \, x + 4\right )^{2}}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.11, size = 31, normalized size = 1.07 \begin {gather*} -\frac {e^{\left (\frac {1}{\log \left (256 \, x^{4} + 320 \, x^{3} + 36 \, x^{2} - 40 \, x + 4\right )^{2}}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 1.10
method | result | size |
risch | \(-\frac {{\mathrm e}^{\frac {1}{\ln \left (256 x^{4}+320 x^{3}+36 x^{2}-40 x +4\right )^{2}}}}{x -1}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {16 \, x^{2} e^{\left (\frac {1}{4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (8 \, x^{2} + 5 \, x - 1\right ) + \log \left (8 \, x^{2} + 5 \, x - 1\right )^{2}\right )}}\right )}}{16 \, x^{3} - 27 \, x^{2} + 6 \, x + 5} + \frac {11 \, x e^{\left (\frac {1}{4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (8 \, x^{2} + 5 \, x - 1\right ) + \log \left (8 \, x^{2} + 5 \, x - 1\right )^{2}\right )}}\right )}}{16 \, x^{3} - 27 \, x^{2} + 6 \, x + 5} + \frac {5 \, e^{\left (\frac {1}{4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (8 \, x^{2} + 5 \, x - 1\right ) + \log \left (8 \, x^{2} + 5 \, x - 1\right )^{2}\right )}}\right )}}{16 \, x^{3} - 27 \, x^{2} + 6 \, x + 5} + \int \frac {e^{\left (\frac {1}{4 \, {\left (\log \relax (2)^{2} + 2 \, \log \relax (2) \log \left (8 \, x^{2} + 5 \, x - 1\right ) + \log \left (8 \, x^{2} + 5 \, x - 1\right )^{2}\right )}}\right )}}{x^{2} - 2 \, x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.04, size = 31, normalized size = 1.07 \begin {gather*} -\frac {{\mathrm {e}}^{\frac {1}{{\ln \left (256\,x^4+320\,x^3+36\,x^2-40\,x+4\right )}^2}}}{x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 31, normalized size = 1.07 \begin {gather*} - \frac {e^{\frac {1}{\log {\left (256 x^{4} + 320 x^{3} + 36 x^{2} - 40 x + 4 \right )}^{2}}}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________