Optimal. Leaf size=29 \[ 3+e^{\frac {2 \left (1-\frac {e^{e^x}+x^2}{x}\right )}{3 (1+x)}} \]
________________________________________________________________________________________
Rubi [F] time = 12.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-2 e^{e^x}+2 x-2 x^2}{3 x+3 x^2}} \left (-4 x^2+e^{e^x} \left (2+4 x+e^x \left (-2 x-2 x^2\right )\right )\right )}{3 x^2+6 x^3+3 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-2 e^{e^x}+2 x-2 x^2}{3 x+3 x^2}} \left (-4 x^2+e^{e^x} \left (2+4 x+e^x \left (-2 x-2 x^2\right )\right )\right )}{x^2 \left (3+6 x+3 x^2\right )} \, dx\\ &=\int \frac {e^{\frac {-2 e^{e^x}+2 x-2 x^2}{3 x+3 x^2}} \left (-4 x^2+e^{e^x} \left (2+4 x+e^x \left (-2 x-2 x^2\right )\right )\right )}{3 x^2 (1+x)^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {-2 e^{e^x}+2 x-2 x^2}{3 x+3 x^2}} \left (-4 x^2+e^{e^x} \left (2+4 x+e^x \left (-2 x-2 x^2\right )\right )\right )}{x^2 (1+x)^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}} \left (-4 x^2+e^{e^x} \left (2+4 x+e^x \left (-2 x-2 x^2\right )\right )\right )}{x^2 (1+x)^2} \, dx\\ &=\frac {1}{3} \int \left (-\frac {2 e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x (1+x)}-\frac {2 e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}} \left (-e^{e^x}-2 e^{e^x} x+2 x^2\right )}{x^2 (1+x)^2}\right ) \, dx\\ &=-\left (\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x (1+x)} \, dx\right )-\frac {2}{3} \int \frac {e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}} \left (-e^{e^x}-2 e^{e^x} x+2 x^2\right )}{x^2 (1+x)^2} \, dx\\ &=-\left (\frac {2}{3} \int \left (\frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{-1-x}+\frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x}\right ) \, dx\right )-\frac {2}{3} \int \left (\frac {2 e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{(1+x)^2}-\frac {e^{e^x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}} (1+2 x)}{x^2 (1+x)^2}\right ) \, dx\\ &=-\left (\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{-1-x} \, dx\right )-\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x} \, dx+\frac {2}{3} \int \frac {e^{e^x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}} (1+2 x)}{x^2 (1+x)^2} \, dx-\frac {4}{3} \int \frac {e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{(1+x)^2} \, dx\\ &=-\left (\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{-1-x} \, dx\right )-\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x} \, dx+\frac {2}{3} \int \left (\frac {e^{e^x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x^2}-\frac {e^{e^x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{(1+x)^2}\right ) \, dx-\frac {4}{3} \int \frac {e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{(1+x)^2} \, dx\\ &=-\left (\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{-1-x} \, dx\right )+\frac {2}{3} \int \frac {e^{e^x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x^2} \, dx-\frac {2}{3} \int \frac {e^{e^x+x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{x} \, dx-\frac {2}{3} \int \frac {e^{e^x-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{(1+x)^2} \, dx-\frac {4}{3} \int \frac {e^{-\frac {2 \left (e^{e^x}-x+x^2\right )}{x (3+3 x)}}}{(1+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.75, size = 25, normalized size = 0.86 \begin {gather*} e^{-\frac {2 \left (e^{e^x}+(-1+x) x\right )}{3 x (1+x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 20, normalized size = 0.69 \begin {gather*} e^{\left (-\frac {2 \, {\left (x^{2} - x + e^{\left (e^{x}\right )}\right )}}{3 \, {\left (x^{2} + x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 36, normalized size = 1.24 \begin {gather*} e^{\left (-\frac {2 \, x^{2}}{3 \, {\left (x^{2} + x\right )}} + \frac {2 \, x}{3 \, {\left (x^{2} + x\right )}} - \frac {2 \, e^{\left (e^{x}\right )}}{3 \, {\left (x^{2} + x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 0.76
method | result | size |
risch | \({\mathrm e}^{-\frac {2 \left (x^{2}+{\mathrm e}^{{\mathrm e}^{x}}-x \right )}{3 \left (x +1\right ) x}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 28, normalized size = 0.97 \begin {gather*} e^{\left (\frac {2 \, e^{\left (e^{x}\right )}}{3 \, {\left (x + 1\right )}} - \frac {2 \, e^{\left (e^{x}\right )}}{3 \, x} + \frac {4}{3 \, {\left (x + 1\right )}} - \frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.26, size = 39, normalized size = 1.34 \begin {gather*} {\mathrm {e}}^{\frac {2}{3\,x+3}}\,{\mathrm {e}}^{-\frac {2\,x}{3\,x+3}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{{\mathrm {e}}^x}}{3\,x^2+3\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 24, normalized size = 0.83 \begin {gather*} e^{\frac {- 2 x^{2} + 2 x - 2 e^{e^{x}}}{3 x^{2} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________