Optimal. Leaf size=25 \[ \frac {1}{4} e^{-10+x} x^{1-x \left (x+\frac {x^2}{64}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 3, number of rules used = 3, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.046, Rules used = {12, 6741, 2288} \begin {gather*} \frac {1}{4} e^{x-10} x^{1-\frac {1}{64} x^2 (x+64)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int x^{\frac {1}{64} \left (-64 x^2-x^3\right )} \left (e^{-5+x} \left (64+64 x-64 x^2-x^3\right )+e^{-5+x} \left (-128 x^2-3 x^3\right ) \log (x)\right ) \, dx}{256 e^5}\\ &=\frac {\int e^{-5+x} x^{\frac {1}{64} (-64-x) x^2} \left (64+64 x-64 x^2-x^3-128 x^2 \log (x)-3 x^3 \log (x)\right ) \, dx}{256 e^5}\\ &=\frac {1}{4} e^{-10+x} x^{1-\frac {1}{64} x^2 (64+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 23, normalized size = 0.92 \begin {gather*} \frac {1}{4} e^{-10+x} x^{1-\frac {1}{64} x^2 (64+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 20, normalized size = 0.80 \begin {gather*} \frac {x e^{\left (x - 10\right )}}{4 \, x^{\frac {1}{64} \, x^{3} + x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (3 \, x^{3} + 128 \, x^{2}\right )} e^{\left (x - 5\right )} \log \relax (x) + {\left (x^{3} + 64 \, x^{2} - 64 \, x - 64\right )} e^{\left (x - 5\right )}\right )} e^{\left (-5\right )}}{256 \, x^{\frac {1}{64} \, x^{3} + x^{2}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.80
method | result | size |
risch | \(\frac {x^{-\frac {x^{2} \left (x +64\right )}{64}} x \,{\mathrm e}^{x -10}}{4}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.97, size = 21, normalized size = 0.84 \begin {gather*} \frac {1}{4} \, x e^{\left (-\frac {1}{64} \, x^{3} \log \relax (x) - x^{2} \log \relax (x) + x - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.06, size = 20, normalized size = 0.80 \begin {gather*} \frac {{\mathrm {e}}^{-10}\,{\mathrm {e}}^x}{4\,x^{\frac {x^3}{64}+x^2-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 106.78, size = 24, normalized size = 0.96 \begin {gather*} \frac {x e^{- \left (\frac {x^{3}}{64} + x^{2}\right ) \log {\relax (x )}} e^{x - 5}}{4 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________