Optimal. Leaf size=31 \[ 5 e^{3 \left (x-\frac {x^2}{(5+3 x) \log (\log (5-\log (x)))}\right )} x \]
________________________________________________________________________________________
Rubi [F] time = 9.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-3 x^2+\left (15 x+9 x^2\right ) \log (\log (5-\log (x)))}{(5+3 x) \log (\log (5-\log (x)))}\right ) \left (75 x^2+45 x^3+\left (750 x^2+225 x^3+\left (-150 x^2-45 x^3\right ) \log (x)\right ) \log (5-\log (x)) \log (\log (5-\log (x)))+\left (-625-2625 x-2475 x^2-675 x^3+\left (125+525 x+495 x^2+135 x^3\right ) \log (x)\right ) \log (5-\log (x)) \log ^2(\log (5-\log (x)))\right )}{\left (-125-150 x-45 x^2+\left (25+30 x+9 x^2\right ) \log (x)\right ) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) \left (-3 x^2 (5+3 x)-(-5+\log (x)) \log (5-\log (x)) \log (\log (5-\log (x))) \left (-3 x^2 (10+3 x)+(1+3 x) (5+3 x)^2 \log (\log (5-\log (x)))\right )\right )}{(5+3 x)^2 (5-\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx\\ &=5 \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) \left (-3 x^2 (5+3 x)-(-5+\log (x)) \log (5-\log (x)) \log (\log (5-\log (x))) \left (-3 x^2 (10+3 x)+(1+3 x) (5+3 x)^2 \log (\log (5-\log (x)))\right )\right )}{(5+3 x)^2 (5-\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx\\ &=5 \int \left (\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )+3 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x+\frac {3 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x^2}{(5+3 x) (-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))}-\frac {3 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x^2 (10+3 x)}{(5+3 x)^2 \log (\log (5-\log (x)))}\right ) \, dx\\ &=5 \int \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) \, dx+15 \int \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x \, dx+15 \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x^2}{(5+3 x) (-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx-15 \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x^2 (10+3 x)}{(5+3 x)^2 \log (\log (5-\log (x)))} \, dx\\ &=5 \int \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) \, dx+15 \int \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x \, dx+15 \int \left (-\frac {5 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{9 (-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))}+\frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x}{3 (-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))}+\frac {25 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{9 (5+3 x) (-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))}\right ) \, dx-15 \int \left (\frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x}{3 \log (\log (5-\log (x)))}+\frac {125 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{9 (5+3 x)^2 \log (\log (5-\log (x)))}-\frac {25 \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{9 (5+3 x) \log (\log (5-\log (x)))}\right ) \, dx\\ &=5 \int \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) \, dx+5 \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x}{(-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx-5 \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x}{\log (\log (5-\log (x)))} \, dx-\frac {25}{3} \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{(-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx+15 \int \exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right ) x \, dx+\frac {125}{3} \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{(5+3 x) (-5+\log (x)) \log (5-\log (x)) \log ^2(\log (5-\log (x)))} \, dx+\frac {125}{3} \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{(5+3 x) \log (\log (5-\log (x)))} \, dx-\frac {625}{3} \int \frac {\exp \left (3 x \left (1-\frac {x}{(5+3 x) \log (\log (5-\log (x)))}\right )\right )}{(5+3 x)^2 \log (\log (5-\log (x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 31, normalized size = 1.00 \begin {gather*} 5 e^{3 x-\frac {3 x^2}{(5+3 x) \log (\log (5-\log (x)))}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 46, normalized size = 1.48 \begin {gather*} 5 \, x e^{\left (-\frac {3 \, {\left (x^{2} - {\left (3 \, x^{2} + 5 \, x\right )} \log \left (\log \left (-\log \relax (x) + 5\right )\right )\right )}}{{\left (3 \, x + 5\right )} \log \left (\log \left (-\log \relax (x) + 5\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 50, normalized size = 1.61
method | result | size |
risch | \(5 x \,{\mathrm e}^{\frac {3 x \left (3 \ln \left (\ln \left (5-\ln \relax (x )\right )\right ) x +5 \ln \left (\ln \left (5-\ln \relax (x )\right )\right )-x \right )}{\left (3 x +5\right ) \ln \left (\ln \left (5-\ln \relax (x )\right )\right )}}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.35, size = 37, normalized size = 1.19 \begin {gather*} 5\,x\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{-\frac {3\,x^2}{5\,\ln \left (\ln \left (5-\ln \relax (x)\right )\right )+3\,x\,\ln \left (\ln \left (5-\ln \relax (x)\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 55.61, size = 39, normalized size = 1.26 \begin {gather*} 5 x e^{\frac {- 3 x^{2} + \left (9 x^{2} + 15 x\right ) \log {\left (\log {\left (5 - \log {\relax (x )} \right )} \right )}}{\left (3 x + 5\right ) \log {\left (\log {\left (5 - \log {\relax (x )} \right )} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________