Optimal. Leaf size=28 \[ -4 x+\left (x+\frac {e^5 x^2}{1+4 x^2}\right )^2-\log (3) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 55, normalized size of antiderivative = 1.96, number of steps used = 7, number of rules used = 5, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {6, 2073, 261, 639, 203} \begin {gather*} x^2-\frac {e^5 \left (4 x+e^5\right )}{8 \left (4 x^2+1\right )}+\frac {e^{10}}{16 \left (4 x^2+1\right )^2}-\frac {1}{2} \left (8-e^5\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 203
Rule 261
Rule 639
Rule 2073
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+2 x-48 x^2+\left (24+4 e^{10}\right ) x^3-192 x^4+96 x^5-256 x^6+128 x^7+e^5 \left (6 x^2+32 x^4+32 x^6\right )}{1+12 x^2+48 x^4+64 x^6} \, dx\\ &=\int \left (\frac {1}{2} \left (-8+e^5\right )+2 x-\frac {e^{10} x}{\left (1+4 x^2\right )^3}+\frac {e^5 \left (-1+e^5 x\right )}{\left (1+4 x^2\right )^2}+\frac {e^5}{2 \left (1+4 x^2\right )}\right ) \, dx\\ &=-\frac {1}{2} \left (8-e^5\right ) x+x^2+\frac {1}{2} e^5 \int \frac {1}{1+4 x^2} \, dx+e^5 \int \frac {-1+e^5 x}{\left (1+4 x^2\right )^2} \, dx-e^{10} \int \frac {x}{\left (1+4 x^2\right )^3} \, dx\\ &=-\frac {1}{2} \left (8-e^5\right ) x+x^2+\frac {e^{10}}{16 \left (1+4 x^2\right )^2}-\frac {e^5 \left (e^5+4 x\right )}{8 \left (1+4 x^2\right )}+\frac {1}{4} e^5 \tan ^{-1}(2 x)-\frac {1}{2} e^5 \int \frac {1}{1+4 x^2} \, dx\\ &=-\frac {1}{2} \left (8-e^5\right ) x+x^2+\frac {e^{10}}{16 \left (1+4 x^2\right )^2}-\frac {e^5 \left (e^5+4 x\right )}{8 \left (1+4 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 50, normalized size = 1.79 \begin {gather*} 2 \left (\frac {1}{2} (-4+x) x+\frac {e^5 x^3}{1+4 x^2}-\frac {e^{10} \left (1+8 x^2\right )}{32 \left (1+4 x^2\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 69, normalized size = 2.46 \begin {gather*} \frac {256 \, x^{6} - 1024 \, x^{5} + 128 \, x^{4} - 512 \, x^{3} + 16 \, x^{2} - {\left (8 \, x^{2} + 1\right )} e^{10} + 32 \, {\left (4 \, x^{5} + x^{3}\right )} e^{5} - 64 \, x}{16 \, {\left (16 \, x^{4} + 8 \, x^{2} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 45, normalized size = 1.61 \begin {gather*} x^{2} + \frac {1}{2} \, x e^{5} - 4 \, x - \frac {32 \, x^{3} e^{5} + 8 \, x^{2} e^{10} + 8 \, x e^{5} + e^{10}}{16 \, {\left (4 \, x^{2} + 1\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 48, normalized size = 1.71
method | result | size |
default | \(x^{2}+\frac {x \,{\mathrm e}^{5}}{2}-4 x +\frac {-2 x^{3} {\mathrm e}^{5}-\frac {x^{2} {\mathrm e}^{10}}{2}-\frac {x \,{\mathrm e}^{5}}{2}-\frac {{\mathrm e}^{10}}{16}}{\left (4 x^{2}+1\right )^{2}}\) | \(48\) |
risch | \(\frac {x \,{\mathrm e}^{5}}{2}+x^{2}-4 x +\frac {-\frac {x^{2} {\mathrm e}^{10}}{32}-\frac {x^{3} {\mathrm e}^{5}}{8}-\frac {{\mathrm e}^{10}}{256}-\frac {x \,{\mathrm e}^{5}}{32}}{x^{4}+\frac {1}{2} x^{2}+\frac {1}{16}}\) | \(50\) |
norman | \(\frac {\left (-64+8 \,{\mathrm e}^{5}\right ) x^{5}+\left (-32+2 \,{\mathrm e}^{5}\right ) x^{3}+x^{2}+\left ({\mathrm e}^{10}+8\right ) x^{4}-4 x +16 x^{6}}{\left (4 x^{2}+1\right )^{2}}\) | \(53\) |
gosper | \(\frac {x \left (x^{3} {\mathrm e}^{10}+8 x^{4} {\mathrm e}^{5}+16 x^{5}-64 x^{4}+2 x^{2} {\mathrm e}^{5}+8 x^{3}-32 x^{2}+x -4\right )}{16 x^{4}+8 x^{2}+1}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 49, normalized size = 1.75 \begin {gather*} x^{2} + \frac {1}{2} \, x {\left (e^{5} - 8\right )} - \frac {32 \, x^{3} e^{5} + 8 \, x^{2} e^{10} + 8 \, x e^{5} + e^{10}}{16 \, {\left (16 \, x^{4} + 8 \, x^{2} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 50, normalized size = 1.79 \begin {gather*} x^2-\frac {4\,{\mathrm {e}}^5\,x^3+{\mathrm {e}}^{10}\,x^2+{\mathrm {e}}^5\,x+\frac {{\mathrm {e}}^{10}}{8}}{32\,x^4+16\,x^2+2}+x\,\left (\frac {{\mathrm {e}}^5}{2}-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 51, normalized size = 1.82 \begin {gather*} x^{2} + x \left (-4 + \frac {e^{5}}{2}\right ) + \frac {- 32 x^{3} e^{5} - 8 x^{2} e^{10} - 8 x e^{5} - e^{10}}{256 x^{4} + 128 x^{2} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________