3.31.30 \(\int e^{-4 x} (4+e^{4 x} (2+7 e^x)) \, dx\)

Optimal. Leaf size=17 \[ 2-e^{-4 x}+7 e^x+2 x \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2282, 14} \begin {gather*} 2 x-e^{-4 x}+7 e^x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(4 + E^(4*x)*(2 + 7*E^x))/E^(4*x),x]

[Out]

-E^(-4*x) + 7*E^x + 2*x

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {2+\frac {4}{x^4}+7 x}{x} \, dx,x,e^x\right )\\ &=\operatorname {Subst}\left (\int \left (7+\frac {4}{x^5}+\frac {2}{x}\right ) \, dx,x,e^x\right )\\ &=-e^{-4 x}+7 e^x+2 x\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 16, normalized size = 0.94 \begin {gather*} -e^{-4 x}+7 e^x+2 x \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(4 + E^(4*x)*(2 + 7*E^x))/E^(4*x),x]

[Out]

-E^(-4*x) + 7*E^x + 2*x

________________________________________________________________________________________

fricas [A]  time = 1.33, size = 20, normalized size = 1.18 \begin {gather*} {\left (2 \, x e^{\left (4 \, x\right )} + 7 \, e^{\left (5 \, x\right )} - 1\right )} e^{\left (-4 \, x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7*exp(x)+2)*exp(2*x)^2+4)/exp(2*x)^2,x, algorithm="fricas")

[Out]

(2*x*e^(4*x) + 7*e^(5*x) - 1)*e^(-4*x)

________________________________________________________________________________________

giac [A]  time = 0.24, size = 14, normalized size = 0.82 \begin {gather*} 2 \, x - e^{\left (-4 \, x\right )} + 7 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7*exp(x)+2)*exp(2*x)^2+4)/exp(2*x)^2,x, algorithm="giac")

[Out]

2*x - e^(-4*x) + 7*e^x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 15, normalized size = 0.88




method result size



default \(2 x -{\mathrm e}^{-4 x}+7 \,{\mathrm e}^{x}\) \(15\)
risch \(2 x -{\mathrm e}^{-4 x}+7 \,{\mathrm e}^{x}\) \(15\)
norman \(\left (-1+7 \,{\mathrm e}^{5 x}+2 x \,{\mathrm e}^{4 x}\right ) {\mathrm e}^{-4 x}\) \(21\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((7*exp(x)+2)*exp(2*x)^2+4)/exp(2*x)^2,x,method=_RETURNVERBOSE)

[Out]

2*x-1/exp(x)^4+7*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 14, normalized size = 0.82 \begin {gather*} 2 \, x - e^{\left (-4 \, x\right )} + 7 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7*exp(x)+2)*exp(2*x)^2+4)/exp(2*x)^2,x, algorithm="maxima")

[Out]

2*x - e^(-4*x) + 7*e^x

________________________________________________________________________________________

mupad [B]  time = 1.75, size = 14, normalized size = 0.82 \begin {gather*} 2\,x-{\mathrm {e}}^{-4\,x}+7\,{\mathrm {e}}^x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-4*x)*(exp(4*x)*(7*exp(x) + 2) + 4),x)

[Out]

2*x - exp(-4*x) + 7*exp(x)

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 14, normalized size = 0.82 \begin {gather*} 2 x + 7 e^{x} - e^{- 4 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((7*exp(x)+2)*exp(2*x)**2+4)/exp(2*x)**2,x)

[Out]

2*x + 7*exp(x) - exp(-4*x)

________________________________________________________________________________________