Optimal. Leaf size=31 \[ \frac {4+5 \left (e^3 x^2+x^{x^2}\right )}{-e^{-2+x}+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 2.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+10 e^3 x^2+e^{-2+x} \left (4+e^3 \left (-10 x+5 x^2\right )\right )+x^{x^2} \left (-10+e^{-2+x} (5-5 x)+10 x^2+\left (-10 e^{-2+x} x+20 x^2\right ) \log (x)\right )}{e^{-4+2 x}-4 e^{-2+x} x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (-8+10 e^3 x^2+e^{-2+x} \left (4+e^3 \left (-10 x+5 x^2\right )\right )+x^{x^2} \left (-10+e^{-2+x} (5-5 x)+10 x^2+\left (-10 e^{-2+x} x+20 x^2\right ) \log (x)\right )\right )}{\left (e^x-2 e^2 x\right )^2} \, dx\\ &=e^4 \int \frac {-8+10 e^3 x^2+e^{-2+x} \left (4+e^3 \left (-10 x+5 x^2\right )\right )+x^{x^2} \left (-10+e^{-2+x} (5-5 x)+10 x^2+\left (-10 e^{-2+x} x+20 x^2\right ) \log (x)\right )}{\left (e^x-2 e^2 x\right )^2} \, dx\\ &=e^4 \int \left (\frac {-8 e^2+4 e^x-10 e^{3+x} x+10 e^5 x^2+5 e^{3+x} x^2}{e^2 \left (-e^x+2 e^2 x\right )^2}+\frac {5 x^{x^2} \left (-2 e^2+e^x-e^x x+2 e^2 x^2-2 e^x x \log (x)+4 e^2 x^2 \log (x)\right )}{e^2 \left (-e^x+2 e^2 x\right )^2}\right ) \, dx\\ &=e^2 \int \frac {-8 e^2+4 e^x-10 e^{3+x} x+10 e^5 x^2+5 e^{3+x} x^2}{\left (-e^x+2 e^2 x\right )^2} \, dx+\left (5 e^2\right ) \int \frac {x^{x^2} \left (-2 e^2+e^x-e^x x+2 e^2 x^2-2 e^x x \log (x)+4 e^2 x^2 \log (x)\right )}{\left (-e^x+2 e^2 x\right )^2} \, dx\\ &=e^2 \int \left (\frac {2 e^2 (-1+x) \left (4+5 e^3 x^2\right )}{\left (-e^x+2 e^2 x\right )^2}+\frac {4-10 e^3 x+5 e^3 x^2}{e^x-2 e^2 x}\right ) \, dx+\left (5 e^2\right ) \int \left (\frac {2 e^2 (-1+x) x^{x^2}}{\left (-e^x+2 e^2 x\right )^2}-\frac {x^{x^2} (-1+x+2 x \log (x))}{e^x-2 e^2 x}\right ) \, dx\\ &=e^2 \int \frac {4-10 e^3 x+5 e^3 x^2}{e^x-2 e^2 x} \, dx-\left (5 e^2\right ) \int \frac {x^{x^2} (-1+x+2 x \log (x))}{e^x-2 e^2 x} \, dx+\left (2 e^4\right ) \int \frac {(-1+x) \left (4+5 e^3 x^2\right )}{\left (-e^x+2 e^2 x\right )^2} \, dx+\left (10 e^4\right ) \int \frac {(-1+x) x^{x^2}}{\left (-e^x+2 e^2 x\right )^2} \, dx\\ &=e^2 \int \left (\frac {4}{e^x-2 e^2 x}+\frac {10 e^3 x}{-e^x+2 e^2 x}-\frac {5 e^3 x^2}{-e^x+2 e^2 x}\right ) \, dx-\left (5 e^2\right ) \int \left (-\frac {x^{x^2}}{e^x-2 e^2 x}-\frac {x^{1+x^2}}{-e^x+2 e^2 x}-\frac {2 x^{1+x^2} \log (x)}{-e^x+2 e^2 x}\right ) \, dx+\left (2 e^4\right ) \int \left (-\frac {4}{\left (e^x-2 e^2 x\right )^2}+\frac {4 x}{\left (-e^x+2 e^2 x\right )^2}-\frac {5 e^3 x^2}{\left (-e^x+2 e^2 x\right )^2}+\frac {5 e^3 x^3}{\left (-e^x+2 e^2 x\right )^2}\right ) \, dx+\left (10 e^4\right ) \int \left (-\frac {x^{x^2}}{\left (e^x-2 e^2 x\right )^2}+\frac {x^{1+x^2}}{\left (-e^x+2 e^2 x\right )^2}\right ) \, dx\\ &=\left (4 e^2\right ) \int \frac {1}{e^x-2 e^2 x} \, dx+\left (5 e^2\right ) \int \frac {x^{x^2}}{e^x-2 e^2 x} \, dx+\left (5 e^2\right ) \int \frac {x^{1+x^2}}{-e^x+2 e^2 x} \, dx+\left (10 e^2\right ) \int \frac {x^{1+x^2} \log (x)}{-e^x+2 e^2 x} \, dx-\left (8 e^4\right ) \int \frac {1}{\left (e^x-2 e^2 x\right )^2} \, dx+\left (8 e^4\right ) \int \frac {x}{\left (-e^x+2 e^2 x\right )^2} \, dx-\left (10 e^4\right ) \int \frac {x^{x^2}}{\left (e^x-2 e^2 x\right )^2} \, dx+\left (10 e^4\right ) \int \frac {x^{1+x^2}}{\left (-e^x+2 e^2 x\right )^2} \, dx-\left (5 e^5\right ) \int \frac {x^2}{-e^x+2 e^2 x} \, dx+\left (10 e^5\right ) \int \frac {x}{-e^x+2 e^2 x} \, dx-\left (10 e^7\right ) \int \frac {x^2}{\left (-e^x+2 e^2 x\right )^2} \, dx+\left (10 e^7\right ) \int \frac {x^3}{\left (-e^x+2 e^2 x\right )^2} \, dx\\ &=\left (4 e^2\right ) \int \frac {1}{e^x-2 e^2 x} \, dx+\left (5 e^2\right ) \int \frac {x^{x^2}}{e^x-2 e^2 x} \, dx+\left (5 e^2\right ) \int \frac {x^{1+x^2}}{-e^x+2 e^2 x} \, dx-\left (10 e^2\right ) \int \frac {\int \frac {x^{1+x^2}}{-e^x+2 e^2 x} \, dx}{x} \, dx-\left (8 e^4\right ) \int \frac {1}{\left (e^x-2 e^2 x\right )^2} \, dx+\left (8 e^4\right ) \int \frac {x}{\left (-e^x+2 e^2 x\right )^2} \, dx-\left (10 e^4\right ) \int \frac {x^{x^2}}{\left (e^x-2 e^2 x\right )^2} \, dx+\left (10 e^4\right ) \int \frac {x^{1+x^2}}{\left (-e^x+2 e^2 x\right )^2} \, dx-\left (5 e^5\right ) \int \frac {x^2}{-e^x+2 e^2 x} \, dx+\left (10 e^5\right ) \int \frac {x}{-e^x+2 e^2 x} \, dx-\left (10 e^7\right ) \int \frac {x^2}{\left (-e^x+2 e^2 x\right )^2} \, dx+\left (10 e^7\right ) \int \frac {x^3}{\left (-e^x+2 e^2 x\right )^2} \, dx+\left (10 e^2 \log (x)\right ) \int \frac {x^{1+x^2}}{-e^x+2 e^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 34, normalized size = 1.10 \begin {gather*} -\frac {e^2 \left (4+5 e^3 x^2+5 x^{x^2}\right )}{e^x-2 e^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.75, size = 29, normalized size = 0.94 \begin {gather*} \frac {5 \, x^{2} e^{3} + 5 \, x^{\left (x^{2}\right )} + 4}{2 \, x - e^{\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.90, size = 133, normalized size = 4.29 \begin {gather*} \frac {10 \, x^{3} e^{7}}{4 \, x^{2} e^{4} - 4 \, x e^{\left (x + 2\right )} + e^{\left (2 \, x\right )}} - \frac {5 \, x^{2} e^{\left (x + 5\right )}}{4 \, x^{2} e^{4} - 4 \, x e^{\left (x + 2\right )} + e^{\left (2 \, x\right )}} + \frac {8 \, x e^{4}}{4 \, x^{2} e^{4} - 4 \, x e^{\left (x + 2\right )} + e^{\left (2 \, x\right )}} + \frac {5 \, x^{\left (x^{2}\right )} e^{2}}{2 \, x e^{2} - e^{x}} - \frac {4 \, e^{\left (x + 2\right )}}{4 \, x^{2} e^{4} - 4 \, x e^{\left (x + 2\right )} + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 43, normalized size = 1.39
method | result | size |
risch | \(\frac {4+5 x^{2} {\mathrm e}^{3}}{2 x -{\mathrm e}^{x -2}}+\frac {5 x^{x^{2}}}{2 x -{\mathrm e}^{x -2}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 36, normalized size = 1.16 \begin {gather*} \frac {5 \, x^{2} e^{5} + 4 \, e^{2} + 5 \, e^{\left (x^{2} \log \relax (x) + 2\right )}}{2 \, x e^{2} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.00, size = 29, normalized size = 0.94 \begin {gather*} \frac {5\,x^2\,{\mathrm {e}}^3+5\,x^{x^2}+4}{2\,x-{\mathrm {e}}^{x-2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 29, normalized size = 0.94 \begin {gather*} \frac {- 5 x^{2} e^{3} - 5 e^{x^{2} \log {\relax (x )}} - 4}{- 2 x + e^{x - 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________