Optimal. Leaf size=24 \[ \frac {x \left (5-e^{e^5}+\frac {3 x^2}{76}\right )}{\log (2 x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 31, normalized size of antiderivative = 1.29, number of steps used = 16, number of rules used = 9, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.209, Rules used = {12, 6741, 6742, 2330, 2297, 2298, 2306, 2309, 2178} \begin {gather*} \frac {3 x^3}{76 \log (2 x)}+\frac {\left (5-e^{e^5}\right ) x}{\log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2297
Rule 2298
Rule 2306
Rule 2309
Rule 2330
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{76} \int \frac {-380+76 e^{e^5}-3 x^2+\left (380-76 e^{e^5}+9 x^2\right ) \log (2 x)}{\log ^2(2 x)} \, dx\\ &=\frac {1}{76} \int \frac {-380 \left (1-\frac {e^{e^5}}{5}\right )-3 x^2+\left (380-76 e^{e^5}+9 x^2\right ) \log (2 x)}{\log ^2(2 x)} \, dx\\ &=\frac {1}{76} \int \left (\frac {-380+76 e^{e^5}-3 x^2}{\log ^2(2 x)}-\frac {-380+76 e^{e^5}-9 x^2}{\log (2 x)}\right ) \, dx\\ &=\frac {1}{76} \int \frac {-380+76 e^{e^5}-3 x^2}{\log ^2(2 x)} \, dx-\frac {1}{76} \int \frac {-380+76 e^{e^5}-9 x^2}{\log (2 x)} \, dx\\ &=\frac {1}{76} \int \left (-\frac {380 \left (1-\frac {e^{e^5}}{5}\right )}{\log ^2(2 x)}-\frac {3 x^2}{\log ^2(2 x)}\right ) \, dx-\frac {1}{76} \int \left (-\frac {380 \left (1-\frac {e^{e^5}}{5}\right )}{\log (2 x)}-\frac {9 x^2}{\log (2 x)}\right ) \, dx\\ &=-\left (\frac {3}{76} \int \frac {x^2}{\log ^2(2 x)} \, dx\right )+\frac {9}{76} \int \frac {x^2}{\log (2 x)} \, dx+\left (-5+e^{e^5}\right ) \int \frac {1}{\log ^2(2 x)} \, dx-\left (-5+e^{e^5}\right ) \int \frac {1}{\log (2 x)} \, dx\\ &=\frac {\left (5-e^{e^5}\right ) x}{\log (2 x)}+\frac {3 x^3}{76 \log (2 x)}+\frac {1}{2} \left (5-e^{e^5}\right ) \text {li}(2 x)+\frac {9}{608} \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (2 x)\right )-\frac {9}{76} \int \frac {x^2}{\log (2 x)} \, dx+\left (-5+e^{e^5}\right ) \int \frac {1}{\log (2 x)} \, dx\\ &=\frac {9}{608} \text {Ei}(3 \log (2 x))+\frac {\left (5-e^{e^5}\right ) x}{\log (2 x)}+\frac {3 x^3}{76 \log (2 x)}-\frac {9}{608} \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (2 x)\right )\\ &=\frac {\left (5-e^{e^5}\right ) x}{\log (2 x)}+\frac {3 x^3}{76 \log (2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 25, normalized size = 1.04 \begin {gather*} \frac {x \left (380-76 e^{e^5}+3 x^2\right )}{76 \log (2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 23, normalized size = 0.96 \begin {gather*} \frac {3 \, x^{3} - 76 \, x e^{\left (e^{5}\right )} + 380 \, x}{76 \, \log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 33, normalized size = 1.38 \begin {gather*} \frac {3 \, x^{3}}{76 \, \log \left (2 \, x\right )} - \frac {x e^{\left (e^{5}\right )}}{\log \left (2 \, x\right )} + \frac {5 \, x}{\log \left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 0.92
method | result | size |
risch | \(-\frac {x \left (-3 x^{2}+76 \,{\mathrm e}^{{\mathrm e}^{5}}-380\right )}{76 \ln \left (2 x \right )}\) | \(22\) |
norman | \(\frac {\left (-{\mathrm e}^{{\mathrm e}^{5}}+5\right ) x +\frac {3 x^{3}}{76}}{\ln \left (2 x \right )}\) | \(23\) |
derivativedivides | \(\frac {{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, -\ln \left (2 x \right )\right )}{2}+\frac {3 x^{3}}{76 \ln \left (2 x \right )}+\frac {{\mathrm e}^{{\mathrm e}^{5}} \left (-\frac {2 x}{\ln \left (2 x \right )}-\expIntegralEi \left (1, -\ln \left (2 x \right )\right )\right )}{2}+\frac {5 x}{\ln \left (2 x \right )}\) | \(60\) |
default | \(\frac {{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, -\ln \left (2 x \right )\right )}{2}+\frac {3 x^{3}}{76 \ln \left (2 x \right )}+\frac {{\mathrm e}^{{\mathrm e}^{5}} \left (-\frac {2 x}{\ln \left (2 x \right )}-\expIntegralEi \left (1, -\ln \left (2 x \right )\right )\right )}{2}+\frac {5 x}{\ln \left (2 x \right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.80, size = 60, normalized size = 2.50 \begin {gather*} -\frac {1}{2} \, {\rm Ei}\left (\log \left (2 \, x\right )\right ) e^{\left (e^{5}\right )} + \frac {1}{2} \, e^{\left (e^{5}\right )} \Gamma \left (-1, -\log \left (2 \, x\right )\right ) + \frac {9}{608} \, {\rm Ei}\left (3 \, \log \left (2 \, x\right )\right ) + \frac {5}{2} \, {\rm Ei}\left (\log \left (2 \, x\right )\right ) - \frac {5}{2} \, \Gamma \left (-1, -\log \left (2 \, x\right )\right ) - \frac {9}{608} \, \Gamma \left (-1, -3 \, \log \left (2 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.77, size = 26, normalized size = 1.08 \begin {gather*} -\frac {x^2\,\left ({\mathrm {e}}^{{\mathrm {e}}^5}-5\right )-\frac {3\,x^4}{76}}{x\,\ln \left (2\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 0.92 \begin {gather*} \frac {3 x^{3} - 76 x e^{e^{5}} + 380 x}{76 \log {\left (2 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________