Optimal. Leaf size=22 \[ \frac {x}{\left (5-\frac {1}{5} x \left (-5+e^2+4 \log (19)\right )^2\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 71, normalized size of antiderivative = 3.23, number of steps used = 8, number of rules used = 2, integrand size = 389, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.005, Rules used = {6, 2074} \begin {gather*} \frac {625}{\left (5-e^2-4 \log (19)\right )^2 \left (25-x \left (5-e^2-4 \log (19)\right )^2\right )^2}-\frac {25}{\left (5-e^2-4 \log (19)\right )^2 \left (25-x \left (5-e^2-4 \log (19)\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-625-25 e^4 x+\left (-625+250 e^2\right ) x+\left (1000 x-200 e^2 x\right ) \log (19)-400 x \log ^2(19)}{-15625+46875 x-46875 x^2+15625 x^3-30 e^{10} x^3+e^{12} x^3+e^2 \left (-18750 x+37500 x^2-18750 x^3\right )+e^6 \left (1500 x^2-2500 x^3\right )+e^8 \left (-75 x^2+375 x^3\right )+e^4 \left (1875 x-11250 x^2+9375 x^3\right )+\left (-75000 x+150000 x^2-75000 x^3-600 e^8 x^3+24 e^{10} x^3+e^4 \left (18000 x^2-30000 x^3\right )+e^6 \left (-1200 x^2+6000 x^3\right )+e^2 \left (15000 x-90000 x^2+75000 x^3\right )\right ) \log (19)+\left (30000 x-180000 x^2+150000 x^3-4800 e^6 x^3+240 e^8 x^3+e^2 \left (72000 x^2-120000 x^3\right )+e^4 \left (-7200 x^2+36000 x^3\right )\right ) \log ^2(19)+\left (96000 x^2-160000 x^3-19200 e^4 x^3+1280 e^6 x^3+e^2 \left (-19200 x^2+96000 x^3\right )\right ) \log ^3(19)+\left (-19200 x^2+96000 x^3-38400 e^2 x^3+3840 e^4 x^3\right ) \log ^4(19)+\left (-30720 x^3+6144 e^2 x^3\right ) \log ^5(19)+4096 x^3 \log ^6(19)} \, dx\\ &=\int \frac {-625+\left (-625+250 e^2-25 e^4\right ) x+\left (1000 x-200 e^2 x\right ) \log (19)-400 x \log ^2(19)}{-15625+46875 x-46875 x^2+15625 x^3-30 e^{10} x^3+e^{12} x^3+e^2 \left (-18750 x+37500 x^2-18750 x^3\right )+e^6 \left (1500 x^2-2500 x^3\right )+e^8 \left (-75 x^2+375 x^3\right )+e^4 \left (1875 x-11250 x^2+9375 x^3\right )+\left (-75000 x+150000 x^2-75000 x^3-600 e^8 x^3+24 e^{10} x^3+e^4 \left (18000 x^2-30000 x^3\right )+e^6 \left (-1200 x^2+6000 x^3\right )+e^2 \left (15000 x-90000 x^2+75000 x^3\right )\right ) \log (19)+\left (30000 x-180000 x^2+150000 x^3-4800 e^6 x^3+240 e^8 x^3+e^2 \left (72000 x^2-120000 x^3\right )+e^4 \left (-7200 x^2+36000 x^3\right )\right ) \log ^2(19)+\left (96000 x^2-160000 x^3-19200 e^4 x^3+1280 e^6 x^3+e^2 \left (-19200 x^2+96000 x^3\right )\right ) \log ^3(19)+\left (-19200 x^2+96000 x^3-38400 e^2 x^3+3840 e^4 x^3\right ) \log ^4(19)+\left (-30720 x^3+6144 e^2 x^3\right ) \log ^5(19)+4096 x^3 \log ^6(19)} \, dx\\ &=\int \frac {-625+\left (1000 x-200 e^2 x\right ) \log (19)+x \left (-625+250 e^2-25 e^4-400 \log ^2(19)\right )}{-15625+46875 x-46875 x^2+15625 x^3-30 e^{10} x^3+e^{12} x^3+e^2 \left (-18750 x+37500 x^2-18750 x^3\right )+e^6 \left (1500 x^2-2500 x^3\right )+e^8 \left (-75 x^2+375 x^3\right )+e^4 \left (1875 x-11250 x^2+9375 x^3\right )+\left (-75000 x+150000 x^2-75000 x^3-600 e^8 x^3+24 e^{10} x^3+e^4 \left (18000 x^2-30000 x^3\right )+e^6 \left (-1200 x^2+6000 x^3\right )+e^2 \left (15000 x-90000 x^2+75000 x^3\right )\right ) \log (19)+\left (30000 x-180000 x^2+150000 x^3-4800 e^6 x^3+240 e^8 x^3+e^2 \left (72000 x^2-120000 x^3\right )+e^4 \left (-7200 x^2+36000 x^3\right )\right ) \log ^2(19)+\left (96000 x^2-160000 x^3-19200 e^4 x^3+1280 e^6 x^3+e^2 \left (-19200 x^2+96000 x^3\right )\right ) \log ^3(19)+\left (-19200 x^2+96000 x^3-38400 e^2 x^3+3840 e^4 x^3\right ) \log ^4(19)+\left (-30720 x^3+6144 e^2 x^3\right ) \log ^5(19)+4096 x^3 \log ^6(19)} \, dx\\ &=\int \frac {-625+\left (1000 x-200 e^2 x\right ) \log (19)+x \left (-625+250 e^2-25 e^4-400 \log ^2(19)\right )}{-15625+46875 x-46875 x^2+e^{12} x^3+\left (15625-30 e^{10}\right ) x^3+e^2 \left (-18750 x+37500 x^2-18750 x^3\right )+e^6 \left (1500 x^2-2500 x^3\right )+e^8 \left (-75 x^2+375 x^3\right )+e^4 \left (1875 x-11250 x^2+9375 x^3\right )+\left (-75000 x+150000 x^2-75000 x^3-600 e^8 x^3+24 e^{10} x^3+e^4 \left (18000 x^2-30000 x^3\right )+e^6 \left (-1200 x^2+6000 x^3\right )+e^2 \left (15000 x-90000 x^2+75000 x^3\right )\right ) \log (19)+\left (30000 x-180000 x^2+150000 x^3-4800 e^6 x^3+240 e^8 x^3+e^2 \left (72000 x^2-120000 x^3\right )+e^4 \left (-7200 x^2+36000 x^3\right )\right ) \log ^2(19)+\left (96000 x^2-160000 x^3-19200 e^4 x^3+1280 e^6 x^3+e^2 \left (-19200 x^2+96000 x^3\right )\right ) \log ^3(19)+\left (-19200 x^2+96000 x^3-38400 e^2 x^3+3840 e^4 x^3\right ) \log ^4(19)+\left (-30720 x^3+6144 e^2 x^3\right ) \log ^5(19)+4096 x^3 \log ^6(19)} \, dx\\ &=\int \frac {-625+\left (1000 x-200 e^2 x\right ) \log (19)+x \left (-625+250 e^2-25 e^4-400 \log ^2(19)\right )}{-15625+46875 x-46875 x^2+\left (15625-30 e^{10}+e^{12}\right ) x^3+e^2 \left (-18750 x+37500 x^2-18750 x^3\right )+e^6 \left (1500 x^2-2500 x^3\right )+e^8 \left (-75 x^2+375 x^3\right )+e^4 \left (1875 x-11250 x^2+9375 x^3\right )+\left (-75000 x+150000 x^2-75000 x^3-600 e^8 x^3+24 e^{10} x^3+e^4 \left (18000 x^2-30000 x^3\right )+e^6 \left (-1200 x^2+6000 x^3\right )+e^2 \left (15000 x-90000 x^2+75000 x^3\right )\right ) \log (19)+\left (30000 x-180000 x^2+150000 x^3-4800 e^6 x^3+240 e^8 x^3+e^2 \left (72000 x^2-120000 x^3\right )+e^4 \left (-7200 x^2+36000 x^3\right )\right ) \log ^2(19)+\left (96000 x^2-160000 x^3-19200 e^4 x^3+1280 e^6 x^3+e^2 \left (-19200 x^2+96000 x^3\right )\right ) \log ^3(19)+\left (-19200 x^2+96000 x^3-38400 e^2 x^3+3840 e^4 x^3\right ) \log ^4(19)+\left (-30720 x^3+6144 e^2 x^3\right ) \log ^5(19)+4096 x^3 \log ^6(19)} \, dx\\ &=\int \frac {-625+\left (1000 x-200 e^2 x\right ) \log (19)+x \left (-625+250 e^2-25 e^4-400 \log ^2(19)\right )}{-15625+46875 x-46875 x^2+e^2 \left (-18750 x+37500 x^2-18750 x^3\right )+e^6 \left (1500 x^2-2500 x^3\right )+e^8 \left (-75 x^2+375 x^3\right )+e^4 \left (1875 x-11250 x^2+9375 x^3\right )+\left (-75000 x+150000 x^2-75000 x^3-600 e^8 x^3+24 e^{10} x^3+e^4 \left (18000 x^2-30000 x^3\right )+e^6 \left (-1200 x^2+6000 x^3\right )+e^2 \left (15000 x-90000 x^2+75000 x^3\right )\right ) \log (19)+\left (30000 x-180000 x^2+150000 x^3-4800 e^6 x^3+240 e^8 x^3+e^2 \left (72000 x^2-120000 x^3\right )+e^4 \left (-7200 x^2+36000 x^3\right )\right ) \log ^2(19)+\left (96000 x^2-160000 x^3-19200 e^4 x^3+1280 e^6 x^3+e^2 \left (-19200 x^2+96000 x^3\right )\right ) \log ^3(19)+\left (-19200 x^2+96000 x^3-38400 e^2 x^3+3840 e^4 x^3\right ) \log ^4(19)+\left (-30720 x^3+6144 e^2 x^3\right ) \log ^5(19)+x^3 \left (15625-30 e^{10}+e^{12}+4096 \log ^6(19)\right )} \, dx\\ &=\int \left (\frac {1250}{\left (25-x \left (5-e^2-4 \log (19)\right )^2\right )^3}-\frac {25}{\left (25-x \left (5-e^2-4 \log (19)\right )^2\right )^2}\right ) \, dx\\ &=\frac {625}{\left (25-x \left (5-e^2-4 \log (19)\right )^2\right )^2 \left (5-e^2-4 \log (19)\right )^2}-\frac {25}{\left (25-x \left (5-e^2-4 \log (19)\right )^2\right ) \left (5-e^2-4 \log (19)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.91 \begin {gather*} \frac {25 x}{\left (-25+x \left (-5+e^2+4 \log (19)\right )^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 147, normalized size = 6.68 \begin {gather*} \frac {25 \, x}{256 \, x^{2} \log \left (19\right )^{4} + 256 \, {\left (x^{2} e^{2} - 5 \, x^{2}\right )} \log \left (19\right )^{3} + x^{2} e^{8} - 20 \, x^{2} e^{6} + 32 \, {\left (3 \, x^{2} e^{4} - 30 \, x^{2} e^{2} + 75 \, x^{2} - 25 \, x\right )} \log \left (19\right )^{2} + 625 \, x^{2} + 50 \, {\left (3 \, x^{2} - x\right )} e^{4} - 500 \, {\left (x^{2} - x\right )} e^{2} + 16 \, {\left (x^{2} e^{6} - 15 \, x^{2} e^{4} - 125 \, x^{2} + 25 \, {\left (3 \, x^{2} - x\right )} e^{2} + 125 \, x\right )} \log \left (19\right ) - 1250 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.41, size = 41, normalized size = 1.86
method | result | size |
norman | \(\frac {25 x}{\left (x \,{\mathrm e}^{4}+8 \,{\mathrm e}^{2} \ln \left (19\right ) x +16 x \ln \left (19\right )^{2}-10 \,{\mathrm e}^{2} x -40 \ln \left (19\right ) x +25 x -25\right )^{2}}\) | \(41\) |
risch | \(\frac {25 x}{x^{2} {\mathrm e}^{8}+16 \,{\mathrm e}^{6} \ln \left (19\right ) x^{2}+96 \,{\mathrm e}^{4} \ln \left (19\right )^{2} x^{2}+256 \,{\mathrm e}^{2} \ln \left (19\right )^{3} x^{2}+256 \ln \left (19\right )^{4} x^{2}-20 x^{2} {\mathrm e}^{6}-240 \,{\mathrm e}^{4} \ln \left (19\right ) x^{2}-960 \,{\mathrm e}^{2} \ln \left (19\right )^{2} x^{2}-1280 \ln \left (19\right )^{3} x^{2}+150 x^{2} {\mathrm e}^{4}+1200 \,{\mathrm e}^{2} \ln \left (19\right ) x^{2}+2400 \ln \left (19\right )^{2} x^{2}-50 x \,{\mathrm e}^{4}-400 \,{\mathrm e}^{2} \ln \left (19\right ) x -500 x^{2} {\mathrm e}^{2}-800 x \ln \left (19\right )^{2}-2000 \ln \left (19\right ) x^{2}+500 \,{\mathrm e}^{2} x +2000 \ln \left (19\right ) x +625 x^{2}-1250 x +625}\) | \(166\) |
gosper | \(\frac {25 x}{x^{2} {\mathrm e}^{8}+16 \,{\mathrm e}^{6} \ln \left (19\right ) x^{2}+96 \,{\mathrm e}^{4} \ln \left (19\right )^{2} x^{2}+256 \,{\mathrm e}^{2} \ln \left (19\right )^{3} x^{2}+256 \ln \left (19\right )^{4} x^{2}-20 x^{2} {\mathrm e}^{6}-240 \,{\mathrm e}^{4} \ln \left (19\right ) x^{2}-960 \,{\mathrm e}^{2} \ln \left (19\right )^{2} x^{2}-1280 \ln \left (19\right )^{3} x^{2}+150 x^{2} {\mathrm e}^{4}+1200 \,{\mathrm e}^{2} \ln \left (19\right ) x^{2}+2400 \ln \left (19\right )^{2} x^{2}-50 x \,{\mathrm e}^{4}-400 \,{\mathrm e}^{2} \ln \left (19\right ) x -500 x^{2} {\mathrm e}^{2}-800 x \ln \left (19\right )^{2}-2000 \ln \left (19\right ) x^{2}+500 \,{\mathrm e}^{2} x +2000 \ln \left (19\right ) x +625 x^{2}-1250 x +625}\) | \(180\) |
default | \(\frac {25 \left (\munderset {\textit {\_R} =\RootOf \left (-15625+\left (15625+75000 \ln \left (19\right ) {\mathrm e}^{2}+375 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{10}-2500 \,{\mathrm e}^{6}+9375 \,{\mathrm e}^{4}-18750 \,{\mathrm e}^{2}-75000 \ln \left (19\right )+{\mathrm e}^{12}+24 \,{\mathrm e}^{10} \ln \left (19\right )+240 \,{\mathrm e}^{8} \ln \left (19\right )^{2}+1280 \,{\mathrm e}^{6} \ln \left (19\right )^{3}+3840 \,{\mathrm e}^{4} \ln \left (19\right )^{4}-600 \,{\mathrm e}^{8} \ln \left (19\right )-4800 \,{\mathrm e}^{6} \ln \left (19\right )^{2}-19200 \,{\mathrm e}^{4} \ln \left (19\right )^{3}+6144 \,{\mathrm e}^{2} \ln \left (19\right )^{5}-38400 \,{\mathrm e}^{2} \ln \left (19\right )^{4}+96000 \,{\mathrm e}^{2} \ln \left (19\right )^{3}-120000 \,{\mathrm e}^{2} \ln \left (19\right )^{2}+6000 \,{\mathrm e}^{6} \ln \left (19\right )+36000 \,{\mathrm e}^{4} \ln \left (19\right )^{2}-30000 \,{\mathrm e}^{4} \ln \left (19\right )-160000 \ln \left (19\right )^{3}+150000 \ln \left (19\right )^{2}+4096 \ln \left (19\right )^{6}-30720 \ln \left (19\right )^{5}+96000 \ln \left (19\right )^{4}\right ) \textit {\_Z}^{3}+\left (1500 \,{\mathrm e}^{6}-75 \,{\mathrm e}^{8}-46875-11250 \,{\mathrm e}^{4}+37500 \,{\mathrm e}^{2}-19200 \ln \left (19\right )^{4}+96000 \ln \left (19\right )^{3}-180000 \ln \left (19\right )^{2}+150000 \ln \left (19\right )-1200 \,{\mathrm e}^{6} \ln \left (19\right )-7200 \,{\mathrm e}^{4} \ln \left (19\right )^{2}+18000 \,{\mathrm e}^{4} \ln \left (19\right )-19200 \,{\mathrm e}^{2} \ln \left (19\right )^{3}+72000 \,{\mathrm e}^{2} \ln \left (19\right )^{2}-90000 \ln \left (19\right ) {\mathrm e}^{2}\right ) \textit {\_Z}^{2}+\left (46875-18750 \,{\mathrm e}^{2}-75000 \ln \left (19\right )+1875 \,{\mathrm e}^{4}+30000 \ln \left (19\right )^{2}+15000 \ln \left (19\right ) {\mathrm e}^{2}\right ) \textit {\_Z} \right )}{\sum }\frac {\left (-\textit {\_R} \,{\mathrm e}^{4}-8 \,{\mathrm e}^{2} \ln \left (19\right ) \textit {\_R} -16 \textit {\_R} \ln \left (19\right )^{2}+10 \,{\mathrm e}^{2} \textit {\_R} +40 \ln \left (19\right ) \textit {\_R} -25 \textit {\_R} -25\right ) \ln \left (x -\textit {\_R} \right )}{15625-31250 \textit {\_R} +5000 \ln \left (19\right ) {\mathrm e}^{2}+625 \,{\mathrm e}^{4}-6250 \,{\mathrm e}^{2}-2500 \textit {\_R}^{2} {\mathrm e}^{6}-25000 \ln \left (19\right )+15625 \textit {\_R}^{2}-7500 \textit {\_R} \,{\mathrm e}^{4}-120000 \textit {\_R} \ln \left (19\right )^{2}+25000 \,{\mathrm e}^{2} \textit {\_R} +100000 \ln \left (19\right ) \textit {\_R} -12800 \ln \left (19\right )^{4} \textit {\_R} +64000 \ln \left (19\right )^{3} \textit {\_R} -50 \textit {\_R} \,{\mathrm e}^{8}+375 \textit {\_R}^{2} {\mathrm e}^{8}+9375 \textit {\_R}^{2} {\mathrm e}^{4}+1000 \textit {\_R} \,{\mathrm e}^{6}-18750 \textit {\_R}^{2} {\mathrm e}^{2}-30 \textit {\_R}^{2} {\mathrm e}^{10}+96000 \ln \left (19\right )^{4} \textit {\_R}^{2}-160000 \ln \left (19\right )^{3} \textit {\_R}^{2}+150000 \ln \left (19\right )^{2} \textit {\_R}^{2}-75000 \ln \left (19\right ) \textit {\_R}^{2}-30720 \ln \left (19\right )^{5} \textit {\_R}^{2}+{\mathrm e}^{12} \textit {\_R}^{2}+4096 \textit {\_R}^{2} \ln \left (19\right )^{6}+10000 \ln \left (19\right )^{2}-60000 \,{\mathrm e}^{2} \ln \left (19\right ) \textit {\_R} +6000 \,{\mathrm e}^{6} \ln \left (19\right ) \textit {\_R}^{2}+36000 \,{\mathrm e}^{4} \ln \left (19\right )^{2} \textit {\_R}^{2}-30000 \,{\mathrm e}^{4} \ln \left (19\right ) \textit {\_R}^{2}-12800 \,{\mathrm e}^{2} \ln \left (19\right )^{3} \textit {\_R} +48000 \,{\mathrm e}^{2} \ln \left (19\right )^{2} \textit {\_R} +96000 \,{\mathrm e}^{2} \ln \left (19\right )^{3} \textit {\_R}^{2}-120000 \,{\mathrm e}^{2} \ln \left (19\right )^{2} \textit {\_R}^{2}+75000 \,{\mathrm e}^{2} \ln \left (19\right ) \textit {\_R}^{2}+6144 \,{\mathrm e}^{2} \ln \left (19\right )^{5} \textit {\_R}^{2}-38400 \,{\mathrm e}^{2} \ln \left (19\right )^{4} \textit {\_R}^{2}+24 \,{\mathrm e}^{10} \ln \left (19\right ) \textit {\_R}^{2}+240 \,{\mathrm e}^{8} \ln \left (19\right )^{2} \textit {\_R}^{2}+1280 \,{\mathrm e}^{6} \ln \left (19\right )^{3} \textit {\_R}^{2}+3840 \,{\mathrm e}^{4} \ln \left (19\right )^{4} \textit {\_R}^{2}-600 \,{\mathrm e}^{8} \ln \left (19\right ) \textit {\_R}^{2}-4800 \,{\mathrm e}^{6} \ln \left (19\right )^{2} \textit {\_R}^{2}-19200 \,{\mathrm e}^{4} \ln \left (19\right )^{3} \textit {\_R}^{2}-800 \,{\mathrm e}^{6} \ln \left (19\right ) \textit {\_R} -4800 \,{\mathrm e}^{4} \ln \left (19\right )^{2} \textit {\_R} +12000 \,{\mathrm e}^{4} \ln \left (19\right ) \textit {\_R}}\right )}{3}\) | \(714\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 98, normalized size = 4.45 \begin {gather*} \frac {25 \, x}{{\left (256 \, {\left (e^{2} - 5\right )} \log \left (19\right )^{3} + 256 \, \log \left (19\right )^{4} + 96 \, {\left (e^{4} - 10 \, e^{2} + 25\right )} \log \left (19\right )^{2} + 16 \, {\left (e^{6} - 15 \, e^{4} + 75 \, e^{2} - 125\right )} \log \left (19\right ) + e^{8} - 20 \, e^{6} + 150 \, e^{4} - 500 \, e^{2} + 625\right )} x^{2} - 50 \, {\left (8 \, {\left (e^{2} - 5\right )} \log \left (19\right ) + 16 \, \log \left (19\right )^{2} + e^{4} - 10 \, e^{2} + 25\right )} x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.35, size = 120, normalized size = 5.45 \begin {gather*} \frac {25\,x}{\left (150\,{\mathrm {e}}^4-500\,{\mathrm {e}}^2-20\,{\mathrm {e}}^6+{\mathrm {e}}^8-2000\,\ln \left (19\right )+1200\,{\mathrm {e}}^2\,\ln \left (19\right )-240\,{\mathrm {e}}^4\,\ln \left (19\right )+16\,{\mathrm {e}}^6\,\ln \left (19\right )-960\,{\mathrm {e}}^2\,{\ln \left (19\right )}^2+256\,{\mathrm {e}}^2\,{\ln \left (19\right )}^3+96\,{\mathrm {e}}^4\,{\ln \left (19\right )}^2+2400\,{\ln \left (19\right )}^2-1280\,{\ln \left (19\right )}^3+256\,{\ln \left (19\right )}^4+625\right )\,x^2+\left (500\,{\mathrm {e}}^2-50\,{\mathrm {e}}^4+2000\,\ln \left (19\right )-400\,{\mathrm {e}}^2\,\ln \left (19\right )-800\,{\ln \left (19\right )}^2-1250\right )\,x+625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 5.82, size = 143, normalized size = 6.50 \begin {gather*} \frac {25 x}{x^{2} \left (- 960 e^{2} \log {\left (19 \right )}^{2} - 240 e^{4} \log {\left (19 \right )} - 1280 \log {\left (19 \right )}^{3} - 20 e^{6} - 2000 \log {\left (19 \right )} - 500 e^{2} + 625 + e^{8} + 150 e^{4} + 16 e^{6} \log {\left (19 \right )} + 256 \log {\left (19 \right )}^{4} + 2400 \log {\left (19 \right )}^{2} + 1200 e^{2} \log {\left (19 \right )} + 96 e^{4} \log {\left (19 \right )}^{2} + 256 e^{2} \log {\left (19 \right )}^{3}\right ) + x \left (- 400 e^{2} \log {\left (19 \right )} - 800 \log {\left (19 \right )}^{2} - 50 e^{4} - 1250 + 500 e^{2} + 2000 \log {\left (19 \right )}\right ) + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________