Optimal. Leaf size=25 \[ 5+\frac {4 e^{-\frac {48 x}{x+\frac {1}{5} e^x \log (x)}}}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 8.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}} \left (960 e^x x-200 x^2+e^x \left (-1040 x+960 x^2\right ) \log (x)-8 e^{2 x} \log ^2(x)\right )}{25 x^5+10 e^x x^4 \log (x)+e^{2 x} x^3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}} \left (960 e^x x-200 x^2+e^x \left (-1040 x+960 x^2\right ) \log (x)-8 e^{2 x} \log ^2(x)\right )}{x^3 \left (5 x+e^x \log (x)\right )^2} \, dx\\ &=\int \left (-\frac {8 e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^3}-\frac {4800 e^{-\frac {240 x}{5 x+e^x \log (x)}} (1-\log (x)+x \log (x))}{x \log (x) \left (5 x+e^x \log (x)\right )^2}+\frac {960 e^{-\frac {240 x}{5 x+e^x \log (x)}} (1-\log (x)+x \log (x))}{x^2 \log (x) \left (5 x+e^x \log (x)\right )}\right ) \, dx\\ &=-\left (8 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^3} \, dx\right )+960 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}} (1-\log (x)+x \log (x))}{x^2 \log (x) \left (5 x+e^x \log (x)\right )} \, dx-4800 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}} (1-\log (x)+x \log (x))}{x \log (x) \left (5 x+e^x \log (x)\right )^2} \, dx\\ &=-\left (8 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^3} \, dx\right )+960 \int \left (-\frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^2 \left (5 x+e^x \log (x)\right )}+\frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x \left (5 x+e^x \log (x)\right )}+\frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^2 \log (x) \left (5 x+e^x \log (x)\right )}\right ) \, dx-4800 \int \left (\frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{\left (5 x+e^x \log (x)\right )^2}-\frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x \left (5 x+e^x \log (x)\right )^2}+\frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x \log (x) \left (5 x+e^x \log (x)\right )^2}\right ) \, dx\\ &=-\left (8 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^3} \, dx\right )-960 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^2 \left (5 x+e^x \log (x)\right )} \, dx+960 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x \left (5 x+e^x \log (x)\right )} \, dx+960 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^2 \log (x) \left (5 x+e^x \log (x)\right )} \, dx-4800 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{\left (5 x+e^x \log (x)\right )^2} \, dx+4800 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x \left (5 x+e^x \log (x)\right )^2} \, dx-4800 \int \frac {e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x \log (x) \left (5 x+e^x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.22, size = 22, normalized size = 0.88 \begin {gather*} \frac {4 e^{-\frac {240 x}{5 x+e^x \log (x)}}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 20, normalized size = 0.80 \begin {gather*} \frac {4 \, e^{\left (-\frac {240 \, x}{e^{x} \log \relax (x) + 5 \, x}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 36, normalized size = 1.44 \begin {gather*} \frac {4 \, e^{\left (x - \frac {x e^{x} \log \relax (x) + 5 \, x^{2} + 240 \, x}{e^{x} \log \relax (x) + 5 \, x}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.84
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-\frac {240 x}{{\mathrm e}^{x} \ln \relax (x )+5 x}}}{x^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 8 \, \int \frac {{\left (10 \, {\left (12 \, x^{2} - 13 \, x\right )} e^{x} \log \relax (x) - e^{\left (2 \, x\right )} \log \relax (x)^{2} - 25 \, x^{2} + 120 \, x e^{x}\right )} e^{\left (-\frac {240 \, x}{e^{x} \log \relax (x) + 5 \, x}\right )}}{10 \, x^{4} e^{x} \log \relax (x) + x^{3} e^{\left (2 \, x\right )} \log \relax (x)^{2} + 25 \, x^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.07, size = 20, normalized size = 0.80 \begin {gather*} \frac {4\,{\mathrm {e}}^{-\frac {240\,x}{5\,x+{\mathrm {e}}^x\,\ln \relax (x)}}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 19, normalized size = 0.76 \begin {gather*} \frac {4 e^{- \frac {240 x}{5 x + e^{x} \log {\relax (x )}}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________