Optimal. Leaf size=28 \[ 4 e^{\frac {e^{-3+e^{2 e^2+2 (16+x)^2}}}{x}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.43, antiderivative size = 154, normalized size of antiderivative = 5.50, number of steps used = 1, number of rules used = 1, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {2288} \begin {gather*} \frac {4 \left (1-4 e^{2 x^2+64 x+2 \left (256+e^2\right )} \left (x^2+16 x\right )\right ) \exp \left (e^{2 x^2+64 x+2 \left (256+e^2\right )}+\frac {e^{e^{2 x^2+64 x+2 \left (256+e^2\right )}-3}}{x}-3\right )}{x \left (\frac {e^{e^{2 x^2+64 x+2 \left (256+e^2\right )}-3}}{x^2}-\frac {4 (x+16) \exp \left (2 x^2+e^{2 x^2+64 x+2 \left (256+e^2\right )}+64 x+2 e^2+509\right )}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 \exp \left (-3+e^{2 \left (256+e^2\right )+64 x+2 x^2}+\frac {e^{-3+e^{2 \left (256+e^2\right )+64 x+2 x^2}}}{x}\right ) \left (1-4 e^{2 \left (256+e^2\right )+64 x+2 x^2} \left (16 x+x^2\right )\right )}{x \left (\frac {e^{-3+e^{2 \left (256+e^2\right )+64 x+2 x^2}}}{x^2}-\frac {4 \exp \left (509+2 e^2+e^{2 \left (256+e^2\right )+64 x+2 x^2}+64 x+2 x^2\right ) (16+x)}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 26, normalized size = 0.93 \begin {gather*} 4 e^{\frac {e^{-3+e^{2 \left (e^2+(16+x)^2\right )}}}{x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.72, size = 37, normalized size = 1.32 \begin {gather*} 4 \, x e^{\left (-\frac {{\left (3 \, x e^{3} - e^{\left (e^{\left (2 \, x^{2} + 64 \, x + 2 \, e^{2} + 512\right )}\right )}\right )} e^{\left (-3\right )}}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x e^{3} + {\left (4 \, {\left (x^{2} + 16 \, x\right )} e^{\left (2 \, x^{2} + 64 \, x + 2 \, e^{2} + 512\right )} - 1\right )} e^{\left (e^{\left (2 \, x^{2} + 64 \, x + 2 \, e^{2} + 512\right )}\right )}\right )} e^{\left (\frac {e^{\left (e^{\left (2 \, x^{2} + 64 \, x + 2 \, e^{2} + 512\right )} - 3\right )}}{x} - 3\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 27, normalized size = 0.96
method | result | size |
risch | \(4 x \,{\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{2 \,{\mathrm e}^{2}+2 x^{2}+64 x +512}-3}}{x}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 26, normalized size = 0.93 \begin {gather*} 4 \, x e^{\left (\frac {e^{\left (e^{\left (2 \, x^{2} + 64 \, x + 2 \, e^{2} + 512\right )} - 3\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.11, size = 29, normalized size = 1.04 \begin {gather*} 4\,x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^{2\,{\mathrm {e}}^2}\,{\mathrm {e}}^{64\,x}\,{\mathrm {e}}^{512}\,{\mathrm {e}}^{2\,x^2}}\,{\mathrm {e}}^{-3}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 119.70, size = 27, normalized size = 0.96 \begin {gather*} 4 x e^{\frac {e^{e^{2 x^{2} + 64 x + 2 e^{2} + 512}}}{x e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________