Optimal. Leaf size=21 \[ -5+x-\log \left (-e^4+x-\log \left (\frac {16}{x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 18, normalized size of antiderivative = 0.86, number of steps used = 4, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6, 6742, 6684} \begin {gather*} x-\log \left (\log \left (\frac {16}{x^2}\right )-x+e^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+\left (1+e^4\right ) x-x^2+x \log \left (\frac {16}{x^2}\right )}{e^4 x-x^2+x \log \left (\frac {16}{x^2}\right )} \, dx\\ &=\int \left (1+\frac {-2-x}{x \left (-e^4+x-\log \left (\frac {16}{x^2}\right )\right )}\right ) \, dx\\ &=x+\int \frac {-2-x}{x \left (-e^4+x-\log \left (\frac {16}{x^2}\right )\right )} \, dx\\ &=x-\log \left (e^4-x+\log \left (\frac {16}{x^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 18, normalized size = 0.86 \begin {gather*} x-\log \left (e^4-x+\log \left (\frac {16}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 17, normalized size = 0.81 \begin {gather*} x - \log \left (-x + e^{4} + \log \left (\frac {16}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 19, normalized size = 0.90 \begin {gather*} x - \log \left (x - e^{4} - \log \left (\frac {16}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 18, normalized size = 0.86
method | result | size |
norman | \(x -\ln \left ({\mathrm e}^{4}+\ln \left (\frac {16}{x^{2}}\right )-x \right )\) | \(18\) |
risch | \(x -\ln \left ({\mathrm e}^{4}+\ln \left (\frac {16}{x^{2}}\right )-x \right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 19, normalized size = 0.90 \begin {gather*} x - \log \left (\frac {1}{2} \, x - \frac {1}{2} \, e^{4} - 2 \, \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.83, size = 17, normalized size = 0.81 \begin {gather*} x-\ln \left (x-{\mathrm {e}}^4+\ln \left (\frac {x^2}{16}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.67 \begin {gather*} x - \log {\left (- x + \log {\left (\frac {16}{x^{2}} \right )} + e^{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________