Optimal. Leaf size=26 \[ -3+x+\log \left (e^{\frac {2-x}{x (2+x)}}+2 x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x^3+24 x^4+12 x^5+2 x^6+e^{\frac {2-x}{2 x+x^2}} \left (-4-4 x+5 x^2+4 x^3+x^4\right )}{8 x^4+8 x^5+2 x^6+e^{\frac {2-x}{2 x+x^2}} \left (4 x^2+4 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2+x}{x}+\frac {e^{\frac {2}{x (2+x)}} \left (-4-12 x-7 x^2-2 x^3\right )}{x^2 (2+x)^2 \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )}\right ) \, dx\\ &=\int \frac {2+x}{x} \, dx+\int \frac {e^{\frac {2}{x (2+x)}} \left (-4-12 x-7 x^2-2 x^3\right )}{x^2 (2+x)^2 \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )} \, dx\\ &=\int \left (1+\frac {2}{x}\right ) \, dx+\int \left (-\frac {e^{\frac {2}{x (2+x)}}}{x^2 \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )}-\frac {2 e^{\frac {2}{x (2+x)}}}{x \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )}+\frac {2 e^{\frac {2}{x (2+x)}}}{(2+x)^2 \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )}\right ) \, dx\\ &=x+2 \log (x)-2 \int \frac {e^{\frac {2}{x (2+x)}}}{x \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )} \, dx+2 \int \frac {e^{\frac {2}{x (2+x)}}}{(2+x)^2 \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )} \, dx-\int \frac {e^{\frac {2}{x (2+x)}}}{x^2 \left (e^{\frac {2}{2 x+x^2}}+2 e^{\frac {1}{2+x}} x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 36, normalized size = 1.38 \begin {gather*} x-\frac {1}{2+x}+\log \left (e^{\frac {1}{x}-\frac {1}{2+x}}+2 e^{\frac {1}{2+x}} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 24, normalized size = 0.92 \begin {gather*} x + \log \left (2 \, x^{2} + e^{\left (-\frac {x - 2}{x^{2} + 2 \, x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 24, normalized size = 0.92 \begin {gather*} x + \log \left (2 \, x^{2} + e^{\left (-\frac {x - 2}{x^{2} + 2 \, x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 41, normalized size = 1.58
method | result | size |
norman | \(\frac {x^{3}-4 x}{x \left (2+x \right )}+\ln \left (2 x^{2}+{\mathrm e}^{\frac {2-x}{x^{2}+2 x}}\right )\) | \(41\) |
risch | \(x +\frac {2-x}{\left (2+x \right ) x}-\frac {2-x}{x^{2}+2 x}+\ln \left (2 x^{2}+{\mathrm e}^{-\frac {x -2}{x \left (2+x \right )}}\right )\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 51, normalized size = 1.96 \begin {gather*} \frac {x^{2} + 2 \, x - 1}{x + 2} + 2 \, \log \relax (x) + \log \left (\frac {{\left (2 \, x^{2} e^{\left (\frac {2}{x + 2}\right )} + e^{\frac {1}{x}}\right )} e^{\left (-\frac {1}{x + 2}\right )}}{2 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.99, size = 23, normalized size = 0.88 \begin {gather*} x+\ln \left (\frac {{\mathrm {e}}^{-\frac {x-2}{x\,\left (x+2\right )}}}{2}+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 0.73 \begin {gather*} x + \log {\left (2 x^{2} + e^{\frac {2 - x}{x^{2} + 2 x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________