Optimal. Leaf size=23 \[ \frac {\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{5+x} \]
________________________________________________________________________________________
Rubi [F] time = 52.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {260 x+62 x^2+2 x^3+\left (e^x \left (125 x+30 x^2+x^3\right )+e^x \left (125+30 x+x^2\right ) \log (25+x)\right ) \log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )+\left (125 x+30 x^2+x^3+\left (125+30 x+x^2\right ) \log (25+x)\right ) \log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right ) \log \left (\log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )\right )+\left (\left (e^x \left (-25 x-x^2\right )+e^x (-25-x) \log (25+x)\right ) \log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )+\left (-25 x^2-x^3+\left (-25 x-x^2\right ) \log (25+x)\right ) \log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right ) \log \left (\log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )\right )\right ) \log \left (e^x+x \log \left (\log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )\right )\right )}{\left (e^x \left (625 x+275 x^2+35 x^3+x^4\right )+e^x \left (625+275 x+35 x^2+x^3\right ) \log (25+x)\right ) \log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )+\left (625 x^2+275 x^3+35 x^4+x^5+\left (625 x+275 x^2+35 x^3+x^4\right ) \log (25+x)\right ) \log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right ) \log \left (\log \left (x^2+2 x \log (25+x)+\log ^2(25+x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {260 x+62 x^2+2 x^3+e^x \left (125+30 x+x^2\right ) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right )+\left (125+30 x+x^2\right ) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-(25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right ) \log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2 (25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx\\ &=\int \left (-\frac {-52 x-2 x^2-25 x \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x^2 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^3 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-25 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^2 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(5+x) (25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}+\frac {5+x-\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2}\right ) \, dx\\ &=-\int \frac {-52 x-2 x^2-25 x \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x^2 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^3 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-25 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^2 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(5+x) (25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx+\int \frac {5+x-\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2} \, dx\\ &=-\int \frac {-2 x (26+x)+\left (-25+24 x+x^2\right ) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(5+x) (25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx+\int \left (\frac {1}{5+x}-\frac {\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2}\right ) \, dx\\ &=\log (5+x)-\int \left (\frac {-52 x-2 x^2-25 x \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x^2 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^3 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-25 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^2 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{20 (5+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}-\frac {-52 x-2 x^2-25 x \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x^2 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^3 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-25 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^2 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{20 (25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}\right ) \, dx-\int \frac {\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2} \, dx\\ &=\log (5+x)-\frac {1}{20} \int \frac {-52 x-2 x^2-25 x \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x^2 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^3 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-25 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^2 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(5+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx+\frac {1}{20} \int \frac {-52 x-2 x^2-25 x \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x^2 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^3 \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )-25 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+24 x \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )+x^2 \log (25+x) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx-\int \frac {\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2} \, dx\\ &=\log (5+x)-\frac {1}{20} \int \frac {-2 x (26+x)+\left (-25+24 x+x^2\right ) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(5+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx+\frac {1}{20} \int \frac {-2 x (26+x)+\left (-25+24 x+x^2\right ) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \log \left (\log \left ((x+\log (25+x))^2\right )\right )}{(25+x) (x+\log (25+x)) \log \left ((x+\log (25+x))^2\right ) \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )} \, dx-\int \frac {\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{(5+x)^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 23, normalized size = 1.00 \begin {gather*} \frac {\log \left (e^x+x \log \left (\log \left ((x+\log (25+x))^2\right )\right )\right )}{5+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.20, size = 31, normalized size = 1.35 \begin {gather*} \frac {\log \left (x \log \left (\log \left (x^{2} + 2 \, x \log \left (x + 25\right ) + \log \left (x + 25\right )^{2}\right )\right ) + e^{x}\right )}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.77, size = 31, normalized size = 1.35 \begin {gather*} \frac {\log \left (x \log \left (\log \left (x^{2} + 2 \, x \log \left (x + 25\right ) + \log \left (x + 25\right )^{2}\right )\right ) + e^{x}\right )}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 67, normalized size = 2.91
method | result | size |
risch | \(\frac {\ln \left (x \ln \left (2 \ln \left (\ln \left (x +25\right )+x \right )-\frac {i \pi \,\mathrm {csgn}\left (i \left (\ln \left (x +25\right )+x \right )^{2}\right ) \left (-\mathrm {csgn}\left (i \left (\ln \left (x +25\right )+x \right )^{2}\right )+\mathrm {csgn}\left (i \left (\ln \left (x +25\right )+x \right )\right )\right )^{2}}{2}\right )+{\mathrm e}^{x}\right )}{5+x}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.06, size = 23, normalized size = 1.00 \begin {gather*} \frac {\log \left (x {\left (\log \relax (2) + \log \left (\log \left (x + \log \left (x + 25\right )\right )\right )\right )} + e^{x}\right )}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.20, size = 54, normalized size = 2.35 \begin {gather*} \frac {\ln \left ({\mathrm {e}}^x+x\,\ln \left (\ln \left (x^2+2\,x\,\ln \left (x+25\right )+{\ln \left (x+25\right )}^2\right )\right )\right )\,\left (x^2+25\,x\right )\,\left (x^2+30\,x+125\right )}{x\,{\left (x+5\right )}^2\,{\left (x+25\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________