Optimal. Leaf size=35 \[ 2 x-x^2-\frac {\log (x+\log (x-(2-x) x))}{\log \left (4 e^{e^x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (1-x-x^2\right ) \log \left (4 e^{e^x}\right )+\log ^2\left (4 e^{e^x}\right ) \left (-2 x^2+4 x^3-2 x^4+\left (-2 x+4 x^2-2 x^3\right ) \log \left (-x+x^2\right )\right )+\left (e^x \left (-x^2+x^3\right )+e^x \left (-x+x^2\right ) \log \left (-x+x^2\right )\right ) \log \left (x+\log \left (-x+x^2\right )\right )}{\log ^2\left (4 e^{e^x}\right ) \left (-x^2+x^3+\left (-x+x^2\right ) \log \left (-x+x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2-2 x-\frac {-1+x+x^2}{(-1+x) x \log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))}+\frac {e^x \log (x+\log ((-1+x) x))}{\log ^2\left (4 e^{e^x}\right )}\right ) \, dx\\ &=2 x-x^2-\int \frac {-1+x+x^2}{(-1+x) x \log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))} \, dx+\int \frac {e^x \log (x+\log ((-1+x) x))}{\log ^2\left (4 e^{e^x}\right )} \, dx\\ &=2 x-x^2-\int \left (\frac {1}{\log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))}+\frac {1}{(-1+x) \log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))}+\frac {1}{x \log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))}\right ) \, dx+\int \frac {e^x \log (x+\log ((-1+x) x))}{\log ^2\left (4 e^{e^x}\right )} \, dx\\ &=2 x-x^2-\int \frac {1}{\log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))} \, dx-\int \frac {1}{(-1+x) \log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))} \, dx-\int \frac {1}{x \log \left (4 e^{e^x}\right ) (x+\log ((-1+x) x))} \, dx+\int \frac {e^x \log (x+\log ((-1+x) x))}{\log ^2\left (4 e^{e^x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 30, normalized size = 0.86 \begin {gather*} 2 x-x^2-\frac {\log (x+\log ((-1+x) x))}{\log \left (4 e^{e^x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 44, normalized size = 1.26 \begin {gather*} -\frac {{\left (x^{2} - 2 \, x\right )} e^{x} + 2 \, {\left (x^{2} - 2 \, x\right )} \log \relax (2) + \log \left (x + \log \left (x^{2} - x\right )\right )}{e^{x} + 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.51, size = 96, normalized size = 2.74 \begin {gather*} -\frac {x^{2} e^{x} + 2 \, x^{2} \log \relax (2) - 2 \, x e^{x} - 4 \, x \log \relax (2) + 4 \, e^{x} \log \left (e^{x} + 2 \, \log \relax (2)\right ) + 8 \, \log \relax (2) \log \left (e^{x} + 2 \, \log \relax (2)\right ) - 4 \, e^{x} \log \left (-e^{x} - 2 \, \log \relax (2)\right ) - 8 \, \log \relax (2) \log \left (-e^{x} - 2 \, \log \relax (2)\right ) + \log \left (x + \log \left (x - 1\right ) + \log \relax (x)\right )}{e^{x} + 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.34, size = 83, normalized size = 2.37
method | result | size |
risch | \(-x^{2}+2 x -\frac {2 i \ln \left (\ln \left (x -1\right )+\ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x -1\right )\right ) \left (-\mathrm {csgn}\left (i x \left (x -1\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (x -1\right )\right )+\mathrm {csgn}\left (i \left (x -1\right )\right )\right )}{2}+x \right )}{4 i \ln \relax (2)+2 i \ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.96, size = 43, normalized size = 1.23 \begin {gather*} -\frac {2 \, x^{2} \log \relax (2) + {\left (x^{2} - 2 \, x\right )} e^{x} - 4 \, x \log \relax (2) + \log \left (x + \log \left (x - 1\right ) + \log \relax (x)\right )}{e^{x} + 2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 29, normalized size = 0.83 \begin {gather*} 2\,x-\frac {\ln \left (x+\ln \left (x^2-x\right )\right )}{\ln \relax (4)+{\mathrm {e}}^x}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.94, size = 24, normalized size = 0.69 \begin {gather*} - x^{2} + 2 x - \frac {\log {\left (x + \log {\left (x^{2} - x \right )} \right )}}{e^{x} + 2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________