Optimal. Leaf size=26 \[ e^x \left (2-\left (-3+e^{1-x}\right )^2+\log (4)\right ) \log (x \log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 1.02, antiderivative size = 42, normalized size of antiderivative = 1.62, number of steps used = 7, number of rules used = 4, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6742, 2365, 43, 2288} \begin {gather*} 6 e \log (x)+6 e \log (\log (x))-e^{2-x} \log (x \log (x))-e^x (7-\log (4)) \log (x \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2288
Rule 2365
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {6 e (1+\log (x))}{x \log (x)}+\frac {e^{2-x} (-1-\log (x)+x \log (x) \log (x \log (x)))}{x \log (x)}+\frac {e^x (-7+\log (4)) (1+\log (x)+x \log (x) \log (x \log (x)))}{x \log (x)}\right ) \, dx\\ &=(6 e) \int \frac {1+\log (x)}{x \log (x)} \, dx+(-7+\log (4)) \int \frac {e^x (1+\log (x)+x \log (x) \log (x \log (x)))}{x \log (x)} \, dx+\int \frac {e^{2-x} (-1-\log (x)+x \log (x) \log (x \log (x)))}{x \log (x)} \, dx\\ &=-e^{2-x} \log (x \log (x))-e^x (7-\log (4)) \log (x \log (x))+(6 e) \operatorname {Subst}\left (\int \frac {1+x}{x} \, dx,x,\log (x)\right )\\ &=-e^{2-x} \log (x \log (x))-e^x (7-\log (4)) \log (x \log (x))+(6 e) \operatorname {Subst}\left (\int \left (1+\frac {1}{x}\right ) \, dx,x,\log (x)\right )\\ &=6 e \log (x)+6 e \log (\log (x))-e^{2-x} \log (x \log (x))-e^x (7-\log (4)) \log (x \log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 35, normalized size = 1.35 \begin {gather*} 6 e \log (x)+6 e \log (\log (x))-e^x \left (7+e^{2-2 x}-\log (4)\right ) \log (x \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 32, normalized size = 1.23 \begin {gather*} {\left ({\left (2 \, \log \relax (2) - 7\right )} e^{\left (2 \, x\right )} - e^{2} + 6 \, e^{\left (x + 1\right )}\right )} e^{\left (-x\right )} \log \left (x \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 65, normalized size = 2.50 \begin {gather*} 2 \, e^{x} \log \relax (2) \log \relax (x) + 2 \, e^{x} \log \relax (2) \log \left (\log \relax (x)\right ) + 6 \, e \log \relax (x) - 7 \, e^{x} \log \relax (x) - e^{\left (-x + 2\right )} \log \relax (x) + 6 \, e \log \left (\log \relax (x)\right ) - 7 \, e^{x} \log \left (\log \relax (x)\right ) - e^{\left (-x + 2\right )} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 340, normalized size = 13.08
method | result | size |
risch | \(-\left (-2 \ln \relax (2) {\mathrm e}^{2 x}+{\mathrm e}^{2}+7 \,{\mathrm e}^{2 x}\right ) {\mathrm e}^{-x} \ln \left (\ln \relax (x )\right )+\frac {\left (-7 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2} {\mathrm e}^{2 x}-i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2}+2 i \pi \ln \relax (2) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2} {\mathrm e}^{2 x}+i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )-i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2}+7 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right ) {\mathrm e}^{2 x}-2 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{3} {\mathrm e}^{2 x}+2 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2} {\mathrm e}^{2 x}+7 i \pi \mathrm {csgn}\left (i x \ln \relax (x )\right )^{3} {\mathrm e}^{2 x}+i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (i x \ln \relax (x )\right )^{3}-2 i \pi \ln \relax (2) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right ) {\mathrm e}^{2 x}-7 i \pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (i x \ln \relax (x )\right )^{2} {\mathrm e}^{2 x}+4 \ln \relax (2) {\mathrm e}^{2 x} \ln \relax (x )+12 \ln \relax (x ) {\mathrm e}^{x +1}-2 \,{\mathrm e}^{2} \ln \relax (x )+12 \ln \left (\ln \relax (x )\right ) {\mathrm e}^{x +1}-14 \,{\mathrm e}^{2 x} \ln \relax (x )\right ) {\mathrm e}^{-x}}{2}\) | \(340\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -{\rm Ei}\left (-x\right ) e^{2} + {\left ({\left (2 \, \log \relax (2) - 7\right )} e^{\left (2 \, x\right )} \log \relax (x) - e^{2} \log \relax (x) + {\left ({\left (2 \, \log \relax (2) - 7\right )} e^{\left (2 \, x\right )} - e^{2}\right )} \log \left (\log \relax (x)\right )\right )} e^{\left (-x\right )} - {\left (2 \, \log \relax (2) - 7\right )} \int \frac {e^{x}}{x}\,{d x} + 2 \, {\rm Ei}\relax (x) \log \relax (2) + 6 \, e \log \relax (x) + 6 \, e \log \left (\log \relax (x)\right ) - 7 \, {\rm Ei}\relax (x) + \int \frac {e^{\left (-x + 2\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (2\,\ln \relax (2)+6\,{\mathrm {e}}^{1-x}-{\mathrm {e}}^{2-2\,x}-7\right )+{\mathrm {e}}^x\,\ln \relax (x)\,\left (2\,\ln \relax (2)+6\,{\mathrm {e}}^{1-x}-{\mathrm {e}}^{2-2\,x}-7\right )+\ln \left (x\,\ln \relax (x)\right )\,{\mathrm {e}}^x\,\ln \relax (x)\,\left (2\,x\,\ln \relax (2)-7\,x+x\,{\mathrm {e}}^{2-2\,x}\right )}{x\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 20.57, size = 54, normalized size = 2.08 \begin {gather*} \left (- 7 \log {\left (x \log {\relax (x )} \right )} + 2 \log {\relax (2 )} \log {\left (x \log {\relax (x )} \right )}\right ) e^{x} + 6 e \log {\relax (x )} + 6 e \log {\left (\log {\relax (x )} \right )} - e^{2} e^{- x} \log {\left (x \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________