Optimal. Leaf size=34 \[ \left (-x+\frac {2}{5+e^x (4+x)}\right ) \left (-3+x-2 \left (e^4+x^2\right )-\log (3)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {85+50 e^4-90 x+150 x^2+25 \log (3)+e^x \left (158-84 x+230 x^2+64 x^3+e^4 (100+24 x)+(50+12 x) \log (3)\right )+e^{2 x} \left (48-8 x+83 x^2+46 x^3+6 x^4+e^4 \left (32+16 x+2 x^2\right )+\left (16+8 x+x^2\right ) \log (3)\right )}{25+e^x (40+10 x)+e^{2 x} \left (16+8 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-90 x+150 x^2+e^x \left (158-84 x+230 x^2+64 x^3+e^4 (100+24 x)+(50+12 x) \log (3)\right )+e^{2 x} \left (48-8 x+83 x^2+46 x^3+6 x^4+e^4 \left (32+16 x+2 x^2\right )+\left (16+8 x+x^2\right ) \log (3)\right )+85 \left (1+\frac {5}{17} \left (2 e^4+\log (3)\right )\right )}{\left (5+4 e^x+e^x x\right )^2} \, dx\\ &=\int \left (-2 x+6 x^2-\frac {10 (5+x) \left (3+2 e^4-x+2 x^2+\log (3)\right )}{(4+x) \left (5+4 e^x+e^x x\right )^2}+3 \left (1+\frac {1}{3} \left (2 e^4+\log (3)\right )\right )+\frac {2 \left (19+10 e^4+5 x^2+2 x^3-x \left (17-2 e^4-\log (3)\right )+\log (243)\right )}{(4+x) \left (5+4 e^x+e^x x\right )}\right ) \, dx\\ &=-x^2+2 x^3+x \left (3+2 e^4+\log (3)\right )+2 \int \frac {19+10 e^4+5 x^2+2 x^3-x \left (17-2 e^4-\log (3)\right )+\log (243)}{(4+x) \left (5+4 e^x+e^x x\right )} \, dx-10 \int \frac {(5+x) \left (3+2 e^4-x+2 x^2+\log (3)\right )}{(4+x) \left (5+4 e^x+e^x x\right )^2} \, dx\\ &=-x^2+2 x^3+x \left (3+2 e^4+\log (3)\right )+2 \int \left (-\frac {3 x}{5+4 e^x+e^x x}+\frac {2 x^2}{5+4 e^x+e^x x}-\frac {5 \left (1+\frac {1}{5} \left (-2 e^4-\log (3)\right )\right )}{5+4 e^x+e^x x}+\frac {39+2 e^4+\log (3)}{(4+x) \left (5+4 e^x+e^x x\right )}\right ) \, dx-10 \int \left (\frac {x}{\left (5+4 e^x+e^x x\right )^2}+\frac {2 x^2}{\left (5+4 e^x+e^x x\right )^2}-\frac {6 \left (1+\frac {1}{6} \left (-2 e^4-\log (3)\right )\right )}{\left (5+4 e^x+e^x x\right )^2}+\frac {39+2 e^4+\log (3)}{(4+x) \left (5+4 e^x+e^x x\right )^2}\right ) \, dx\\ &=-x^2+2 x^3+x \left (3+2 e^4+\log (3)\right )+4 \int \frac {x^2}{5+4 e^x+e^x x} \, dx-6 \int \frac {x}{5+4 e^x+e^x x} \, dx-10 \int \frac {x}{\left (5+4 e^x+e^x x\right )^2} \, dx-20 \int \frac {x^2}{\left (5+4 e^x+e^x x\right )^2} \, dx-\left (2 \left (5-2 e^4-\log (3)\right )\right ) \int \frac {1}{5+4 e^x+e^x x} \, dx+\left (10 \left (6-2 e^4-\log (3)\right )\right ) \int \frac {1}{\left (5+4 e^x+e^x x\right )^2} \, dx+\left (2 \left (39+2 e^4+\log (3)\right )\right ) \int \frac {1}{(4+x) \left (5+4 e^x+e^x x\right )} \, dx-\left (10 \left (39+2 e^4+\log (3)\right )\right ) \int \frac {1}{(4+x) \left (5+4 e^x+e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 68, normalized size = 2.00 \begin {gather*} -x^2+2 x^3+x \left (3+2 e^4+\log (3)\right )-\frac {30+18 x^2+4 x^3+4 e^4 (5+x)+x (-4+\log (9))+\log (59049)}{(5+x) \left (5+e^x (4+x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 86, normalized size = 2.53 \begin {gather*} \frac {10 \, x^{3} - 9 \, x^{2} + 2 \, {\left (5 \, x - 2\right )} e^{4} + {\left (2 \, x^{4} + 7 \, x^{3} - x^{2} + 2 \, {\left (x^{2} + 4 \, x\right )} e^{4} + {\left (x^{2} + 4 \, x\right )} \log \relax (3) + 12 \, x\right )} e^{x} + {\left (5 \, x - 2\right )} \log \relax (3) + 17 \, x - 6}{{\left (x + 4\right )} e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 103, normalized size = 3.03 \begin {gather*} \frac {2 \, x^{4} e^{x} + 7 \, x^{3} e^{x} + x^{2} e^{x} \log \relax (3) + 10 \, x^{3} + 2 \, x^{2} e^{\left (x + 4\right )} - x^{2} e^{x} + 4 \, x e^{x} \log \relax (3) - 9 \, x^{2} + 10 \, x e^{4} + 8 \, x e^{\left (x + 4\right )} + 12 \, x e^{x} + 5 \, x \log \relax (3) + 17 \, x - 4 \, e^{4} - 2 \, \log \relax (3) - 6}{x e^{x} + 4 \, e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 54, normalized size = 1.59
method | result | size |
risch | \(2 x^{3}+x \ln \relax (3)+2 x \,{\mathrm e}^{4}-x^{2}+3 x -\frac {2 \left (2 x^{2}+\ln \relax (3)+2 \,{\mathrm e}^{4}-x +3\right )}{{\mathrm e}^{x} x +4 \,{\mathrm e}^{x}+5}\) | \(54\) |
norman | \(\frac {\left (17+10 \,{\mathrm e}^{4}+5 \ln \relax (3)\right ) x +\left (-48-32 \,{\mathrm e}^{4}-16 \ln \relax (3)\right ) {\mathrm e}^{x}+\left (-1+2 \,{\mathrm e}^{4}+\ln \relax (3)\right ) x^{2} {\mathrm e}^{x}-9 x^{2}+10 x^{3}+7 \,{\mathrm e}^{x} x^{3}+2 \,{\mathrm e}^{x} x^{4}-66-22 \ln \relax (3)-44 \,{\mathrm e}^{4}}{{\mathrm e}^{x} x +4 \,{\mathrm e}^{x}+5}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 80, normalized size = 2.35 \begin {gather*} \frac {10 \, x^{3} - 9 \, x^{2} + x {\left (10 \, e^{4} + 5 \, \log \relax (3) + 17\right )} + {\left (2 \, x^{4} + 7 \, x^{3} + x^{2} {\left (2 \, e^{4} + \log \relax (3) - 1\right )} + 4 \, x {\left (2 \, e^{4} + \log \relax (3) + 3\right )}\right )} e^{x} - 4 \, e^{4} - 2 \, \log \relax (3) - 6}{{\left (x + 4\right )} e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.84, size = 89, normalized size = 2.62 \begin {gather*} \frac {7\,x^3\,{\mathrm {e}}^x+2\,x^4\,{\mathrm {e}}^x+{\mathrm {e}}^x\,\left (\frac {16\,{\mathrm {e}}^4}{5}+\frac {8\,\ln \relax (3)}{5}+\frac {24}{5}\right )+x\,\left (10\,{\mathrm {e}}^4+\ln \left (243\right )+17\right )-9\,x^2+10\,x^3+x\,{\mathrm {e}}^x\,\left (\frac {44\,{\mathrm {e}}^4}{5}+\frac {22\,\ln \relax (3)}{5}+\frac {66}{5}\right )+x^2\,{\mathrm {e}}^x\,\left (2\,{\mathrm {e}}^4+\ln \relax (3)-1\right )}{4\,{\mathrm {e}}^x+x\,{\mathrm {e}}^x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 48, normalized size = 1.41 \begin {gather*} 2 x^{3} - x^{2} + x \left (\log {\relax (3 )} + 3 + 2 e^{4}\right ) + \frac {- 4 x^{2} + 2 x - 4 e^{4} - 6 - 2 \log {\relax (3 )}}{\left (x + 4\right ) e^{x} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________