Optimal. Leaf size=22 \[ \left (-3+16 e^{-7 x/3}-x+x^2\right ) \log ^4(x) \]
________________________________________________________________________________________
Rubi [A] time = 0.69, antiderivative size = 35, normalized size of antiderivative = 1.59, number of steps used = 26, number of rules used = 11, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 6742, 2202, 2357, 2296, 2295, 2302, 30, 2305, 2304, 2330} \begin {gather*} x^2 \log ^4(x)+16 e^{-7 x/3} \log ^4(x)-x \log ^4(x)-3 \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2202
Rule 2295
Rule 2296
Rule 2302
Rule 2304
Rule 2305
Rule 2330
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-7 x/3} \left (\left (192+e^{7 x/3} \left (-36-12 x+12 x^2\right )\right ) \log ^3(x)+\left (-112 x+e^{7 x/3} \left (-3 x+6 x^2\right )\right ) \log ^4(x)\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (-\frac {16 e^{-7 x/3} \log ^3(x) (-12+7 x \log (x))}{x}+\frac {3 \log ^3(x) \left (-12-4 x+4 x^2-x \log (x)+2 x^2 \log (x)\right )}{x}\right ) \, dx\\ &=-\left (\frac {16}{3} \int \frac {e^{-7 x/3} \log ^3(x) (-12+7 x \log (x))}{x} \, dx\right )+\int \frac {\log ^3(x) \left (-12-4 x+4 x^2-x \log (x)+2 x^2 \log (x)\right )}{x} \, dx\\ &=16 e^{-7 x/3} \log ^4(x)+\int \left (\frac {4 \left (-3-x+x^2\right ) \log ^3(x)}{x}+(-1+2 x) \log ^4(x)\right ) \, dx\\ &=16 e^{-7 x/3} \log ^4(x)+4 \int \frac {\left (-3-x+x^2\right ) \log ^3(x)}{x} \, dx+\int (-1+2 x) \log ^4(x) \, dx\\ &=16 e^{-7 x/3} \log ^4(x)+4 \int \left (-\log ^3(x)-\frac {3 \log ^3(x)}{x}+x \log ^3(x)\right ) \, dx+\int \left (-\log ^4(x)+2 x \log ^4(x)\right ) \, dx\\ &=16 e^{-7 x/3} \log ^4(x)+2 \int x \log ^4(x) \, dx-4 \int \log ^3(x) \, dx+4 \int x \log ^3(x) \, dx-12 \int \frac {\log ^3(x)}{x} \, dx-\int \log ^4(x) \, dx\\ &=-4 x \log ^3(x)+2 x^2 \log ^3(x)+16 e^{-7 x/3} \log ^4(x)-x \log ^4(x)+x^2 \log ^4(x)+4 \int \log ^3(x) \, dx-4 \int x \log ^3(x) \, dx-6 \int x \log ^2(x) \, dx+12 \int \log ^2(x) \, dx-12 \operatorname {Subst}\left (\int x^3 \, dx,x,\log (x)\right )\\ &=12 x \log ^2(x)-3 x^2 \log ^2(x)-3 \log ^4(x)+16 e^{-7 x/3} \log ^4(x)-x \log ^4(x)+x^2 \log ^4(x)+6 \int x \log (x) \, dx+6 \int x \log ^2(x) \, dx-12 \int \log ^2(x) \, dx-24 \int \log (x) \, dx\\ &=24 x-\frac {3 x^2}{2}-24 x \log (x)+3 x^2 \log (x)-3 \log ^4(x)+16 e^{-7 x/3} \log ^4(x)-x \log ^4(x)+x^2 \log ^4(x)-6 \int x \log (x) \, dx+24 \int \log (x) \, dx\\ &=-3 \log ^4(x)+16 e^{-7 x/3} \log ^4(x)-x \log ^4(x)+x^2 \log ^4(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 22, normalized size = 1.00 \begin {gather*} \left (-3+16 e^{-7 x/3}-x+x^2\right ) \log ^4(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 24, normalized size = 1.09 \begin {gather*} {\left ({\left (x^{2} - x - 3\right )} e^{\left (\frac {7}{3} \, x\right )} + 16\right )} e^{\left (-\frac {7}{3} \, x\right )} \log \relax (x)^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (3 \, {\left (2 \, x^{2} - x\right )} e^{\left (\frac {7}{3} \, x\right )} - 112 \, x\right )} \log \relax (x)^{4} + 12 \, {\left ({\left (x^{2} - x - 3\right )} e^{\left (\frac {7}{3} \, x\right )} + 16\right )} \log \relax (x)^{3}\right )} e^{\left (-\frac {7}{3} \, x\right )}}{3 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.50
method | result | size |
risch | \(\left ({\mathrm e}^{\frac {7 x}{3}} x^{2}-{\mathrm e}^{\frac {7 x}{3}} x -3 \,{\mathrm e}^{\frac {7 x}{3}}+16\right ) {\mathrm e}^{-\frac {7 x}{3}} \ln \relax (x )^{4}\) | \(33\) |
default | \(x^{2} \ln \relax (x )^{4}-x \ln \relax (x )^{4}+16 \ln \relax (x )^{4} {\mathrm e}^{-\frac {7 x}{3}}-3 \ln \relax (x )^{4}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 116, normalized size = 5.27 \begin {gather*} {\left (x^{2} - x\right )} \log \relax (x)^{4} + 16 \, e^{\left (-\frac {7}{3} \, x\right )} \log \relax (x)^{4} - 2 \, {\left (x^{2} - 2 \, x\right )} \log \relax (x)^{3} - 3 \, \log \relax (x)^{4} + \frac {1}{2} \, {\left (4 \, \log \relax (x)^{3} - 6 \, \log \relax (x)^{2} + 6 \, \log \relax (x) - 3\right )} x^{2} + 3 \, {\left (x^{2} - 4 \, x\right )} \log \relax (x)^{2} - 4 \, {\left (\log \relax (x)^{3} - 3 \, \log \relax (x)^{2} + 6 \, \log \relax (x) - 6\right )} x + \frac {3}{2} \, x^{2} - 3 \, {\left (x^{2} - 8 \, x\right )} \log \relax (x) - 24 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.82, size = 20, normalized size = 0.91 \begin {gather*} -{\ln \relax (x)}^4\,\left (x-16\,{\mathrm {e}}^{-\frac {7\,x}{3}}-x^2+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 24, normalized size = 1.09 \begin {gather*} \left (x^{2} - x - 3\right ) \log {\relax (x )}^{4} + 16 e^{- \frac {7 x}{3}} \log {\relax (x )}^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________