3.30.20 \(\int \frac {-15-3 x-x^2-3 \log ^2(4)}{5 x^2+x^3+x^2 \log ^2(4)} \, dx\)

Optimal. Leaf size=28 \[ \frac {1875}{4}+\frac {3}{x}-\log (2)-\log \left (1+\frac {1}{5} \left (x+\log ^2(4)\right )\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 16, normalized size of antiderivative = 0.57, number of steps used = 4, number of rules used = 3, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6, 1593, 893} \begin {gather*} \frac {3}{x}-\log \left (x+5+\log ^2(4)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-15 - 3*x - x^2 - 3*Log[4]^2)/(5*x^2 + x^3 + x^2*Log[4]^2),x]

[Out]

3/x - Log[5 + x + Log[4]^2]

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 893

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && I
ntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15-3 x-x^2-3 \log ^2(4)}{x^3+x^2 \left (5+\log ^2(4)\right )} \, dx\\ &=\int \frac {-15-3 x-x^2-3 \log ^2(4)}{x^2 \left (5+x+\log ^2(4)\right )} \, dx\\ &=\int \left (-\frac {3}{x^2}+\frac {1}{-5-x-\log ^2(4)}\right ) \, dx\\ &=\frac {3}{x}-\log \left (5+x+\log ^2(4)\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 16, normalized size = 0.57 \begin {gather*} \frac {3}{x}-\log \left (5+x+\log ^2(4)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-15 - 3*x - x^2 - 3*Log[4]^2)/(5*x^2 + x^3 + x^2*Log[4]^2),x]

[Out]

3/x - Log[5 + x + Log[4]^2]

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 19, normalized size = 0.68 \begin {gather*} -\frac {x \log \left (4 \, \log \relax (2)^{2} + x + 5\right ) - 3}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*log(2)^2-x^2-3*x-15)/(4*x^2*log(2)^2+x^3+5*x^2),x, algorithm="fricas")

[Out]

-(x*log(4*log(2)^2 + x + 5) - 3)/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 19, normalized size = 0.68 \begin {gather*} \frac {3}{x} - \log \left ({\left | 4 \, \log \relax (2)^{2} + x + 5 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*log(2)^2-x^2-3*x-15)/(4*x^2*log(2)^2+x^3+5*x^2),x, algorithm="giac")

[Out]

3/x - log(abs(4*log(2)^2 + x + 5))

________________________________________________________________________________________

maple [A]  time = 0.49, size = 19, normalized size = 0.68




method result size



default \(\frac {3}{x}-\ln \left (4 \ln \relax (2)^{2}+x +5\right )\) \(19\)
norman \(\frac {3}{x}-\ln \left (4 \ln \relax (2)^{2}+x +5\right )\) \(19\)
risch \(\frac {3}{x}-\ln \left (4 \ln \relax (2)^{2}+x +5\right )\) \(19\)
meijerg \(-\frac {12 \ln \relax (2)^{2} \left (-\frac {4 \ln \relax (2)^{2}+5}{x}-\ln \relax (x )+\ln \left (4 \ln \relax (2)^{2}+5\right )+\ln \left (1+\frac {x}{4 \ln \relax (2)^{2}+5}\right )\right )}{\left (4 \ln \relax (2)^{2}+5\right )^{2}}-\ln \left (1+\frac {x}{4 \ln \relax (2)^{2}+5}\right )-\frac {3 \left (\ln \relax (x )-\ln \left (4 \ln \relax (2)^{2}+5\right )-\ln \left (1+\frac {x}{4 \ln \relax (2)^{2}+5}\right )\right )}{4 \ln \relax (2)^{2}+5}-\frac {15 \left (-\frac {4 \ln \relax (2)^{2}+5}{x}-\ln \relax (x )+\ln \left (4 \ln \relax (2)^{2}+5\right )+\ln \left (1+\frac {x}{4 \ln \relax (2)^{2}+5}\right )\right )}{\left (4 \ln \relax (2)^{2}+5\right )^{2}}\) \(174\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-12*ln(2)^2-x^2-3*x-15)/(4*x^2*ln(2)^2+x^3+5*x^2),x,method=_RETURNVERBOSE)

[Out]

3/x-ln(4*ln(2)^2+x+5)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 18, normalized size = 0.64 \begin {gather*} \frac {3}{x} - \log \left (4 \, \log \relax (2)^{2} + x + 5\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*log(2)^2-x^2-3*x-15)/(4*x^2*log(2)^2+x^3+5*x^2),x, algorithm="maxima")

[Out]

3/x - log(4*log(2)^2 + x + 5)

________________________________________________________________________________________

mupad [B]  time = 1.82, size = 18, normalized size = 0.64 \begin {gather*} \frac {3}{x}-\ln \left (x+4\,{\ln \relax (2)}^2+5\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3*x + 12*log(2)^2 + x^2 + 15)/(4*x^2*log(2)^2 + 5*x^2 + x^3),x)

[Out]

3/x - log(x + 4*log(2)^2 + 5)

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 14, normalized size = 0.50 \begin {gather*} - \log {\left (x + 4 \log {\relax (2 )}^{2} + 5 \right )} + \frac {3}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-12*ln(2)**2-x**2-3*x-15)/(4*x**2*ln(2)**2+x**3+5*x**2),x)

[Out]

-log(x + 4*log(2)**2 + 5) + 3/x

________________________________________________________________________________________