Optimal. Leaf size=31 \[ -2+e^4+\left (1+e^{2 e^{-5-\frac {e^5}{x}}}+x-x^2\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.97, antiderivative size = 26, normalized size of antiderivative = 0.84, number of steps used = 3, number of rules used = 3, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6688, 12, 6686} \begin {gather*} \left (-x^2+x+e^{2 e^{-\frac {e^5}{x}-5}}+1\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-\frac {e^5}{x}} \left (1+e^{2 e^{-5-\frac {e^5}{x}}}+x-x^2\right ) \left (2 e^{2 e^{-5-\frac {e^5}{x}}}+e^{\frac {e^5}{x}} \left (x^2-2 x^3\right )\right )}{x^2} \, dx\\ &=2 \int \frac {e^{-\frac {e^5}{x}} \left (1+e^{2 e^{-5-\frac {e^5}{x}}}+x-x^2\right ) \left (2 e^{2 e^{-5-\frac {e^5}{x}}}+e^{\frac {e^5}{x}} \left (x^2-2 x^3\right )\right )}{x^2} \, dx\\ &=\left (1+e^{2 e^{-5-\frac {e^5}{x}}}+x-x^2\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 26, normalized size = 0.84 \begin {gather*} \left (1+e^{2 e^{-5-\frac {e^5}{x}}}+x-x^2\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 57, normalized size = 1.84 \begin {gather*} x^{4} - 2 \, x^{3} - x^{2} - 2 \, {\left (x^{2} - x - 1\right )} e^{\left (2 \, e^{\left (-\frac {5 \, x + e^{5}}{x}\right )}\right )} + 2 \, x + e^{\left (4 \, e^{\left (-\frac {5 \, x + e^{5}}{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left ({\left (2 \, {\left (x^{2} - x - 1\right )} e^{5} + {\left (2 \, x^{3} - x^{2}\right )} e^{\left (\frac {5 \, x + e^{5}}{x}\right )}\right )} e^{\left (2 \, e^{\left (-\frac {5 \, x + e^{5}}{x}\right )}\right )} - {\left (2 \, x^{5} - 3 \, x^{4} - x^{3} + x^{2}\right )} e^{\left (\frac {5 \, x + e^{5}}{x}\right )} - 2 \, e^{\left (4 \, e^{\left (-\frac {5 \, x + e^{5}}{x}\right )} + 5\right )}\right )} e^{\left (-\frac {5 \, x + e^{5}}{x}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 59, normalized size = 1.90
method | result | size |
risch | \(x^{4}-2 x^{3}-x^{2}+{\mathrm e}^{4 \,{\mathrm e}^{-\frac {{\mathrm e}^{5}+5 x}{x}}}+2 x +\left (-2 x^{2}+2 x +2\right ) {\mathrm e}^{2 \,{\mathrm e}^{-\frac {{\mathrm e}^{5}+5 x}{x}}}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{4} - 2 \, x^{3} - x^{2} + 2 \, x + e^{\left (4 \, e^{\left (-\frac {e^{5}}{x} - 5\right )}\right )} - 2 \, \int \frac {{\left (2 \, x^{2} + {\left (2 \, x^{3} - x^{2}\right )} e^{\left (\frac {e^{5}}{x}\right )} - 2 \, x - 2\right )} e^{\left (-\frac {e^{5}}{x} + 2 \, e^{\left (-\frac {e^{5}}{x} - 5\right )}\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{-\frac {5\,x+{\mathrm {e}}^5}{x}}\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^{-\frac {5\,x+{\mathrm {e}}^5}{x}}}\,\left ({\mathrm {e}}^5\,\left (-4\,x^2+4\,x+4\right )+{\mathrm {e}}^{\frac {5\,x+{\mathrm {e}}^5}{x}}\,\left (2\,x^2-4\,x^3\right )\right )+4\,{\mathrm {e}}^5\,{\mathrm {e}}^{4\,{\mathrm {e}}^{-\frac {5\,x+{\mathrm {e}}^5}{x}}}+{\mathrm {e}}^{\frac {5\,x+{\mathrm {e}}^5}{x}}\,\left (4\,x^5-6\,x^4-2\,x^3+2\,x^2\right )\right )}{x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.47, size = 51, normalized size = 1.65 \begin {gather*} x^{4} - 2 x^{3} - x^{2} + 2 x + \left (- 2 x^{2} + 2 x + 2\right ) e^{2 e^{- \frac {5 x + e^{5}}{x}}} + e^{4 e^{- \frac {5 x + e^{5}}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________