Optimal. Leaf size=32 \[ \frac {-x-\log (x)+3 \log \left (\frac {1}{3} x \left (x+\frac {4}{5 (5+x)}\right )\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20 x+129 x^2+50 x^3+5 x^4+\left (60+730 x+171 x^2-20 x^3-5 x^4\right ) \log (x)+\left (-60-387 x-150 x^2-15 x^3\right ) \log \left (\frac {4 x+25 x^2+5 x^3}{75+15 x}\right )}{\left (20 x+129 x^2+50 x^3+5 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+\frac {\left (60+730 x+171 x^2-20 x^3-5 x^4\right ) \log (x)}{20+129 x+50 x^2+5 x^3}-3 \log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)} \, dx\\ &=\int \left (\frac {20 x+129 x^2+50 x^3+5 x^4+60 \log (x)+730 x \log (x)+171 x^2 \log (x)-20 x^3 \log (x)-5 x^4 \log (x)}{x (5+x) \left (4+25 x+5 x^2\right ) \log ^2(x)}-\frac {3 \log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)}\right ) \, dx\\ &=-\left (3 \int \frac {\log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)} \, dx\right )+\int \frac {20 x+129 x^2+50 x^3+5 x^4+60 \log (x)+730 x \log (x)+171 x^2 \log (x)-20 x^3 \log (x)-5 x^4 \log (x)}{x (5+x) \left (4+25 x+5 x^2\right ) \log ^2(x)} \, dx\\ &=-\left (3 \int \frac {\log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)} \, dx\right )+\int \left (\frac {1}{\log ^2(x)}+\frac {60+730 x+171 x^2-20 x^3-5 x^4}{x (5+x) \left (4+25 x+5 x^2\right ) \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {\log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)} \, dx\right )+\int \frac {1}{\log ^2(x)} \, dx+\int \frac {60+730 x+171 x^2-20 x^3-5 x^4}{x (5+x) \left (4+25 x+5 x^2\right ) \log (x)} \, dx\\ &=-\frac {x}{\log (x)}-3 \int \frac {\log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)} \, dx+\int \frac {1}{\log (x)} \, dx+\int \frac {60+730 x+171 x^2-20 x^3-5 x^4}{x (5+x) \left (4+25 x+5 x^2\right ) \log (x)} \, dx\\ &=-\frac {x}{\log (x)}+\text {li}(x)-3 \int \frac {\log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{x \log ^2(x)} \, dx+\int \frac {60+730 x+171 x^2-20 x^3-5 x^4}{x (5+x) \left (4+25 x+5 x^2\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 35, normalized size = 1.09 \begin {gather*} -\frac {x}{\log (x)}+\frac {3 \log \left (\frac {x \left (4+25 x+5 x^2\right )}{15 (5+x)}\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 32, normalized size = 1.00 \begin {gather*} -\frac {x - 3 \, \log \left (\frac {5 \, x^{3} + 25 \, x^{2} + 4 \, x}{15 \, {\left (x + 5\right )}}\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 37, normalized size = 1.16 \begin {gather*} -\frac {x}{\log \relax (x)} + \frac {3 \, \log \left (5 \, x^{2} + 25 \, x + 4\right )}{\log \relax (x)} - \frac {3 \, \log \left (15 \, x + 75\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 307, normalized size = 9.59
method | result | size |
risch | \(\frac {3 \ln \left (x^{2}+5 x +\frac {4}{5}\right )}{\ln \relax (x )}-\frac {3 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right ) \mathrm {csgn}\left (\frac {i x \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )-3 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )^{2}+3 i \pi \,\mathrm {csgn}\left (\frac {i}{5+x}\right ) \mathrm {csgn}\left (i \left (x^{2}+5 x +\frac {4}{5}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )-3 i \pi \,\mathrm {csgn}\left (\frac {i}{5+x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )^{2}-3 i \pi \,\mathrm {csgn}\left (i \left (x^{2}+5 x +\frac {4}{5}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )^{2}+3 i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )^{3}-3 i \pi \,\mathrm {csgn}\left (\frac {i \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right ) \mathrm {csgn}\left (\frac {i x \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )^{2}+3 i \pi \mathrm {csgn}\left (\frac {i x \left (x^{2}+5 x +\frac {4}{5}\right )}{5+x}\right )^{3}+6 \ln \relax (3)+2 x +6 \ln \left (5+x \right )}{2 \ln \relax (x )}\) | \(307\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 35, normalized size = 1.09 \begin {gather*} -\frac {x + 3 \, \log \relax (5) + 3 \, \log \relax (3) - 3 \, \log \left (5 \, x^{2} + 25 \, x + 4\right ) + 3 \, \log \left (x + 5\right )}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 33, normalized size = 1.03 \begin {gather*} -\frac {x-3\,\ln \left (\frac {5\,x^3+25\,x^2+4\,x}{15\,\left (x+5\right )}\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 29, normalized size = 0.91 \begin {gather*} - \frac {x}{\log {\relax (x )}} + \frac {3 \log {\left (\frac {5 x^{3} + 25 x^{2} + 4 x}{15 x + 75} \right )}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________