Optimal. Leaf size=28 \[ -3 \left (2-e^x\right )+\frac {e}{12 x^2}-\left (8-e^2\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 24, normalized size of antiderivative = 0.86, number of steps used = 7, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6, 12, 14, 2194} \begin {gather*} \frac {e}{12 x^2}-\left (\left (8-e^2\right ) x\right )+3 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e+18 e^x x^3+\left (-48+6 e^2\right ) x^3}{6 x^3} \, dx\\ &=\frac {1}{6} \int \frac {-e+18 e^x x^3+\left (-48+6 e^2\right ) x^3}{x^3} \, dx\\ &=\frac {1}{6} \int \left (18 e^x+\frac {-e-6 \left (8-e^2\right ) x^3}{x^3}\right ) \, dx\\ &=\frac {1}{6} \int \frac {-e-6 \left (8-e^2\right ) x^3}{x^3} \, dx+3 \int e^x \, dx\\ &=3 e^x+\frac {1}{6} \int \left (6 \left (-8+e^2\right )-\frac {e}{x^3}\right ) \, dx\\ &=3 e^x+\frac {e}{12 x^2}-\left (8-e^2\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 0.79 \begin {gather*} 3 e^x+\frac {e}{12 x^2}-8 x+e^2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 27, normalized size = 0.96 \begin {gather*} \frac {12 \, x^{3} e^{2} - 96 \, x^{3} + 36 \, x^{2} e^{x} + e}{12 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 27, normalized size = 0.96 \begin {gather*} \frac {12 \, x^{3} e^{2} - 96 \, x^{3} + 36 \, x^{2} e^{x} + e}{12 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.71
method | result | size |
default | \(-8 x +\frac {{\mathrm e}}{12 x^{2}}+{\mathrm e}^{2} x +3 \,{\mathrm e}^{x}\) | \(20\) |
risch | \(-8 x +\frac {{\mathrm e}}{12 x^{2}}+{\mathrm e}^{2} x +3 \,{\mathrm e}^{x}\) | \(20\) |
norman | \(\frac {\left (-8+{\mathrm e}^{2}\right ) x^{3}+3 \,{\mathrm e}^{x} x^{2}+\frac {{\mathrm e}}{12}}{x^{2}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.68 \begin {gather*} x e^{2} - 8 \, x + \frac {e}{12 \, x^{2}} + 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.64 \begin {gather*} 3\,{\mathrm {e}}^x+x\,\left ({\mathrm {e}}^2-8\right )+\frac {\mathrm {e}}{12\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 0.79 \begin {gather*} - \frac {x \left (48 - 6 e^{2}\right )}{6} + 3 e^{x} + \frac {e}{12 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________