Optimal. Leaf size=19 \[ 4 x+\frac {9-e+e^x+3 x}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 20, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {14, 2197} \begin {gather*} 4 x+\frac {e^x}{x}+\frac {9-e}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x (-1+x)}{x^2}+\frac {-9+e+4 x^2}{x^2}\right ) \, dx\\ &=\int \frac {e^x (-1+x)}{x^2} \, dx+\int \frac {-9+e+4 x^2}{x^2} \, dx\\ &=\frac {e^x}{x}+\int \left (4+\frac {-9+e}{x^2}\right ) \, dx\\ &=\frac {9-e}{x}+\frac {e^x}{x}+4 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 0.89 \begin {gather*} \frac {9-e+e^x+4 x^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 17, normalized size = 0.89 \begin {gather*} \frac {4 \, x^{2} - e + e^{x} + 9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 17, normalized size = 0.89 \begin {gather*} \frac {4 \, x^{2} - e + e^{x} + 9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.95
method | result | size |
norman | \(\frac {4 x^{2}-{\mathrm e}+9+{\mathrm e}^{x}}{x}\) | \(18\) |
default | \(4 x -\frac {{\mathrm e}}{x}+\frac {9}{x}+\frac {{\mathrm e}^{x}}{x}\) | \(23\) |
risch | \(4 x -\frac {{\mathrm e}}{x}+\frac {9}{x}+\frac {{\mathrm e}^{x}}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.63, size = 25, normalized size = 1.32 \begin {gather*} 4 \, x - \frac {e}{x} + \frac {9}{x} + {\rm Ei}\relax (x) - \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 16, normalized size = 0.84 \begin {gather*} 4\,x+\frac {{\mathrm {e}}^x-\mathrm {e}+9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.74 \begin {gather*} 4 x + \frac {e^{x}}{x} + \frac {9 - e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________