Optimal. Leaf size=21 \[ \frac {x \left (5-4 e^{1+x} x^3\right )}{\log (8+\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 1.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5+4 e^{1+x} x^3+\left (40+e^{1+x} \left (-128 x^3-32 x^4\right )+\left (5+e^{1+x} \left (-16 x^3-4 x^4\right )\right ) \log (x)\right ) \log (8+\log (x))}{(8+\log (x)) \log ^2(8+\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5+4 e^{1+x} x^3-\left (-5+4 e^{1+x} x^3 (4+x)\right ) (8+\log (x)) \log (8+\log (x))}{(8+\log (x)) \log ^2(8+\log (x))} \, dx\\ &=\int \left (\frac {5 (-1+8 \log (8+\log (x))+\log (x) \log (8+\log (x)))}{(8+\log (x)) \log ^2(8+\log (x))}-\frac {4 e^{1+x} x^3 (-1+32 \log (8+\log (x))+8 x \log (8+\log (x))+4 \log (x) \log (8+\log (x))+x \log (x) \log (8+\log (x)))}{(8+\log (x)) \log ^2(8+\log (x))}\right ) \, dx\\ &=-\left (4 \int \frac {e^{1+x} x^3 (-1+32 \log (8+\log (x))+8 x \log (8+\log (x))+4 \log (x) \log (8+\log (x))+x \log (x) \log (8+\log (x)))}{(8+\log (x)) \log ^2(8+\log (x))} \, dx\right )+5 \int \frac {-1+8 \log (8+\log (x))+\log (x) \log (8+\log (x))}{(8+\log (x)) \log ^2(8+\log (x))} \, dx\\ &=-\frac {4 e^{1+x} x^3 (8 x \log (8+\log (x))+x \log (x) \log (8+\log (x)))}{(8+\log (x)) \log ^2(8+\log (x))}+5 \int \frac {-\frac {1}{8+\log (x)}+\log (8+\log (x))}{\log ^2(8+\log (x))} \, dx\\ &=-\frac {4 e^{1+x} x^3 (8 x \log (8+\log (x))+x \log (x) \log (8+\log (x)))}{(8+\log (x)) \log ^2(8+\log (x))}+5 \int \left (-\frac {1}{(8+\log (x)) \log ^2(8+\log (x))}+\frac {1}{\log (8+\log (x))}\right ) \, dx\\ &=-\frac {4 e^{1+x} x^3 (8 x \log (8+\log (x))+x \log (x) \log (8+\log (x)))}{(8+\log (x)) \log ^2(8+\log (x))}-5 \int \frac {1}{(8+\log (x)) \log ^2(8+\log (x))} \, dx+5 \int \frac {1}{\log (8+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 22, normalized size = 1.05 \begin {gather*} -\frac {x \left (-5+4 e^{1+x} x^3\right )}{\log (8+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 22, normalized size = 1.05 \begin {gather*} -\frac {4 \, x^{4} e^{\left (x + 1\right )} - 5 \, x}{\log \left (\log \relax (x) + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 22, normalized size = 1.05 \begin {gather*} -\frac {4 \, x^{4} e^{\left (x + 1\right )} - 5 \, x}{\log \left (\log \relax (x) + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.05
method | result | size |
risch | \(-\frac {x \left (4 x^{3} {\mathrm e}^{x +1}-5\right )}{\ln \left (\ln \relax (x )+8\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 22, normalized size = 1.05 \begin {gather*} -\frac {4 \, x^{4} e^{\left (x + 1\right )} - 5 \, x}{\log \left (\log \relax (x) + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.82, size = 21, normalized size = 1.00 \begin {gather*} -\frac {x\,\left (4\,x^3\,{\mathrm {e}}^{x+1}-5\right )}{\ln \left (\ln \relax (x)+8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 26, normalized size = 1.24 \begin {gather*} - \frac {4 x^{4} e^{x + 1}}{\log {\left (\log {\relax (x )} + 8 \right )}} + \frac {5 x}{\log {\left (\log {\relax (x )} + 8 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________