Optimal. Leaf size=26 \[ e^{5-x}+\frac {3}{\left (e^{2 x}+x\right ) \left (\frac {1}{x}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 x^3+e^{5+3 x} \left (-1-2 x^2-x^4\right )+e^{5-x} \left (-x^2-2 x^4-x^6\right )+e^{2 x} \left (3-6 x-3 x^2-6 x^3+e^{5-x} \left (-2 x-4 x^3-2 x^5\right )\right )}{x^2+2 x^4+x^6+e^{4 x} \left (1+2 x^2+x^4\right )+e^{2 x} \left (2 x+4 x^3+2 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-6 e^x x^3-e^{5+4 x} \left (1+x^2\right )^2-2 e^{5+2 x} x \left (1+x^2\right )^2-e^5 \left (x+x^3\right )^2-3 e^{3 x} \left (-1+2 x+x^2+2 x^3\right )\right )}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )^2} \, dx\\ &=\int \left (-e^{5-x}+\frac {3 x (-1+2 x)}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )}-\frac {3 \left (-1+2 x+x^2+2 x^3\right )}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2}\right ) \, dx\\ &=3 \int \frac {x (-1+2 x)}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )} \, dx-3 \int \frac {-1+2 x+x^2+2 x^3}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2} \, dx-\int e^{5-x} \, dx\\ &=e^{5-x}+3 \int \left (\frac {2}{\left (e^{2 x}+x\right )^2}-\frac {2+x}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )}\right ) \, dx-3 \int \left (-\frac {2}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2}+\frac {1+2 x}{\left (e^{2 x}+x\right ) \left (1+x^2\right )}\right ) \, dx\\ &=e^{5-x}-3 \int \frac {2+x}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )} \, dx-3 \int \frac {1+2 x}{\left (e^{2 x}+x\right ) \left (1+x^2\right )} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right )^2} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2} \, dx\\ &=e^{5-x}-3 \int \left (\frac {2}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )}+\frac {x}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )}\right ) \, dx-3 \int \left (\frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )}+\frac {2 x}{\left (e^{2 x}+x\right ) \left (1+x^2\right )}\right ) \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right )^2} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2} \, dx\\ &=e^{5-x}-3 \int \frac {x}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )} \, dx-3 \int \frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right )^2} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2} \, dx-6 \int \frac {1}{\left (e^{2 x}+x\right )^2 \left (1+x^2\right )} \, dx-6 \int \frac {x}{\left (e^{2 x}+x\right ) \left (1+x^2\right )} \, dx\\ &=e^{5-x}-3 \int \left (-\frac {1}{2 (i-x) \left (e^{2 x}+x\right )^2}+\frac {1}{2 (i+x) \left (e^{2 x}+x\right )^2}\right ) \, dx-3 \int \left (\frac {i}{2 (i-x) \left (e^{2 x}+x\right )}+\frac {i}{2 (i+x) \left (e^{2 x}+x\right )}\right ) \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right )^2} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2} \, dx-6 \int \left (\frac {i}{2 (i-x) \left (e^{2 x}+x\right )^2}+\frac {i}{2 (i+x) \left (e^{2 x}+x\right )^2}\right ) \, dx-6 \int \left (-\frac {1}{2 (i-x) \left (e^{2 x}+x\right )}+\frac {1}{2 (i+x) \left (e^{2 x}+x\right )}\right ) \, dx\\ &=e^{5-x}-\frac {3}{2} i \int \frac {1}{(i-x) \left (e^{2 x}+x\right )} \, dx-\frac {3}{2} i \int \frac {1}{(i+x) \left (e^{2 x}+x\right )} \, dx-3 i \int \frac {1}{(i-x) \left (e^{2 x}+x\right )^2} \, dx-3 i \int \frac {1}{(i+x) \left (e^{2 x}+x\right )^2} \, dx+\frac {3}{2} \int \frac {1}{(i-x) \left (e^{2 x}+x\right )^2} \, dx-\frac {3}{2} \int \frac {1}{(i+x) \left (e^{2 x}+x\right )^2} \, dx+3 \int \frac {1}{(i-x) \left (e^{2 x}+x\right )} \, dx-3 \int \frac {1}{(i+x) \left (e^{2 x}+x\right )} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right )^2} \, dx+6 \int \frac {1}{\left (e^{2 x}+x\right ) \left (1+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 27, normalized size = 1.04 \begin {gather*} e^{5-x}+\frac {3 x}{\left (e^{2 x}+x\right ) \left (1+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.80, size = 58, normalized size = 2.23 \begin {gather*} \frac {{\left (x^{2} + 1\right )} e^{\left (-x + 15\right )} + 3 \, x e^{\left (-2 \, x + 10\right )} + {\left (x^{3} + x\right )} e^{\left (-3 \, x + 15\right )}}{{\left (x^{2} + 1\right )} e^{10} + {\left (x^{3} + x\right )} e^{\left (-2 \, x + 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.39, size = 58, normalized size = 2.23 \begin {gather*} \frac {x^{3} e^{5} + x^{2} e^{\left (2 \, x + 5\right )} + x e^{5} + 3 \, x e^{x} + e^{\left (2 \, x + 5\right )}}{x^{3} e^{x} + x^{2} e^{\left (3 \, x\right )} + x e^{x} + e^{\left (3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{5-x}+\frac {3 x}{\left (x^{2}+1\right ) \left ({\mathrm e}^{2 x}+x \right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.12, size = 52, normalized size = 2.00 \begin {gather*} \frac {x^{3} e^{5} + x e^{5} + {\left (x^{2} e^{5} + e^{5}\right )} e^{\left (2 \, x\right )} + 3 \, x e^{x}}{{\left (x^{2} + 1\right )} e^{\left (3 \, x\right )} + {\left (x^{3} + x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 60, normalized size = 2.31 \begin {gather*} \frac {{\mathrm {e}}^{5-x}\,\left (x+3\,x\,{\mathrm {e}}^{x-5}+{\mathrm {e}}^{10}\,{\mathrm {e}}^{2\,x-10}+x^3+x^2\,{\mathrm {e}}^{10}\,{\mathrm {e}}^{2\,x-10}\right )}{\left (x^2+1\right )\,\left (x+{\mathrm {e}}^{10}\,{\mathrm {e}}^{2\,x-10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 29, normalized size = 1.12 \begin {gather*} \frac {3 x}{x^{3} + x + \left (x^{2} + 1\right ) e^{2 x}} + \frac {e^{5}}{\sqrt {e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________