Optimal. Leaf size=23 \[ \log \left (\frac {28+x+\log (2)+\frac {x}{\log \left (\frac {3}{2 x}\right )}}{\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+\log \left (\frac {3}{2 x}\right )+\log ^2\left (\frac {3}{2 x}\right )}{x \log \left (\frac {3}{2 x}\right )+(28+x+\log (2)) \log ^2\left (\frac {3}{2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{28+x+\log (2)}+\frac {1}{x \log \left (\frac {3}{2 x}\right )}+\frac {-x^2-x (28+\log (2))-(28+\log (2))^2}{x (28+x+\log (2)) \left (x+x \log \left (\frac {3}{2 x}\right )+28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )\right )}\right ) \, dx\\ &=\log (28+x+\log (2))+\int \frac {1}{x \log \left (\frac {3}{2 x}\right )} \, dx+\int \frac {-x^2-x (28+\log (2))-(28+\log (2))^2}{x (28+x+\log (2)) \left (x+x \log \left (\frac {3}{2 x}\right )+28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )\right )} \, dx\\ &=\log (28+x+\log (2))+\int \frac {-x^2-x (28+\log (2))-(28+\log (2))^2}{x (28+x+\log (2)) \left (x+(28+x+\log (2)) \log \left (\frac {3}{2 x}\right )\right )} \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {3}{2 x}\right )\right )\\ &=\log (28+x+\log (2))-\log \left (\log \left (\frac {3}{2 x}\right )\right )+\int \left (\frac {1}{-x-x \log \left (\frac {3}{2 x}\right )-28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )}+\frac {-28-\log (2)}{x \left (x+x \log \left (\frac {3}{2 x}\right )+28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )\right )}+\frac {28+\log (2)}{(28+x+\log (2)) \left (x+x \log \left (\frac {3}{2 x}\right )+28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )\right )}\right ) \, dx\\ &=\log (28+x+\log (2))-\log \left (\log \left (\frac {3}{2 x}\right )\right )+(-28-\log (2)) \int \frac {1}{x \left (x+x \log \left (\frac {3}{2 x}\right )+28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )\right )} \, dx+(28+\log (2)) \int \frac {1}{(28+x+\log (2)) \left (x+x \log \left (\frac {3}{2 x}\right )+28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )\right )} \, dx+\int \frac {1}{-x-x \log \left (\frac {3}{2 x}\right )-28 \left (1+\frac {\log (2)}{28}\right ) \log \left (\frac {3}{2 x}\right )} \, dx\\ &=\log (28+x+\log (2))-\log \left (\log \left (\frac {3}{2 x}\right )\right )+(-28-\log (2)) \int \frac {1}{x \left (x+(28+x+\log (2)) \log \left (\frac {3}{2 x}\right )\right )} \, dx+(28+\log (2)) \int \frac {1}{(28+x+\log (2)) \left (x+(28+x+\log (2)) \log \left (\frac {3}{2 x}\right )\right )} \, dx+\int \frac {1}{-x-(28+x+\log (2)) \log \left (\frac {3}{2 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 46, normalized size = 2.00 \begin {gather*} -\log \left (\log \left (\frac {3}{2 x}\right )\right )+\log \left (x+28 \log \left (\frac {3}{2 x}\right )+x \log \left (\frac {3}{2 x}\right )+\log (2) \log \left (\frac {3}{2 x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 39, normalized size = 1.70 \begin {gather*} \log \left (x + \log \relax (2) + 28\right ) + \log \left (\frac {{\left (x + \log \relax (2) + 28\right )} \log \left (\frac {3}{2 \, x}\right ) + x}{x + \log \relax (2) + 28}\right ) - \log \left (\log \left (\frac {3}{2 \, x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.26, size = 53, normalized size = 2.30 \begin {gather*} \log \left (\frac {3 \, \log \relax (2) \log \left (\frac {3}{2 \, x}\right )}{x} + \frac {84 \, \log \left (\frac {3}{2 \, x}\right )}{x} + 3 \, \log \left (\frac {3}{2 \, x}\right ) + 3\right ) - \log \left (\frac {3}{2 \, x}\right ) - \log \left (\log \left (\frac {3}{2 \, x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 34, normalized size = 1.48
method | result | size |
risch | \(\ln \left (\ln \relax (2)+x +28\right )-\ln \left (\ln \left (\frac {3}{2 x}\right )\right )+\ln \left (\ln \left (\frac {3}{2 x}\right )+\frac {x}{\ln \relax (2)+x +28}\right )\) | \(34\) |
norman | \(-\ln \left (\ln \left (\frac {3}{2 x}\right )\right )+\ln \left (\ln \left (\frac {3}{2 x}\right ) \ln \relax (2)+x \ln \left (\frac {3}{2 x}\right )+28 \ln \left (\frac {3}{2 x}\right )+x \right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 66, normalized size = 2.87 \begin {gather*} \log \left (x + \log \relax (2) + 28\right ) + \log \left (-\frac {x {\left (\log \relax (3) - \log \relax (2) + 1\right )} + {\left (\log \relax (3) - 28\right )} \log \relax (2) - \log \relax (2)^{2} - {\left (x + \log \relax (2) + 28\right )} \log \relax (x) + 28 \, \log \relax (3)}{x + \log \relax (2) + 28}\right ) - \log \left (-\log \relax (3) + \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.15, size = 38, normalized size = 1.65 \begin {gather*} \ln \left (x+28\,\ln \left (\frac {3}{2\,x}\right )+\ln \relax (2)\,\ln \left (\frac {3}{2\,x}\right )+x\,\ln \left (\frac {3}{2\,x}\right )\right )-\ln \left (\ln \left (\frac {3}{2\,x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________