Optimal. Leaf size=29 \[ 4+\frac {-\frac {x^2}{2+\log (4)}+\log \left (\frac {1}{\log (x)}\right )}{-1+\frac {2}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.58, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+2 x+(-2+x) \log (4)+\left (-6 x^2+2 x^3\right ) \log (x)+(4+2 \log (4)) \log (x) \log \left (\frac {1}{\log (x)}\right )}{\left (8-8 x+2 x^2+\left (4-4 x+x^2\right ) \log (4)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {-2+x}{\log (x)}+2 \left (\frac {(-3+x) x^2}{2+\log (4)}+\log \left (\frac {1}{\log (x)}\right )\right )}{(2-x)^2} \, dx\\ &=\int \left (\frac {-4 (1+\log (2))+2 x (1+\log (2))-6 x^2 \log (x)+2 x^3 \log (x)}{(2-x)^2 (2+\log (4)) \log (x)}+\frac {2 \log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2}\right ) \, dx\\ &=2 \int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2} \, dx+\frac {\int \frac {-4 (1+\log (2))+2 x (1+\log (2))-6 x^2 \log (x)+2 x^3 \log (x)}{(2-x)^2 \log (x)} \, dx}{2+\log (4)}\\ &=2 \int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2} \, dx+\frac {\int \frac {2 \left ((-2+x) (1+\log (2))+(-3+x) x^2 \log (x)\right )}{(2-x)^2 \log (x)} \, dx}{2+\log (4)}\\ &=2 \int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2} \, dx+\frac {2 \int \frac {(-2+x) (1+\log (2))+(-3+x) x^2 \log (x)}{(2-x)^2 \log (x)} \, dx}{2+\log (4)}\\ &=2 \int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2} \, dx+\frac {2 \int \left (\frac {(-3+x) x^2}{(-2+x)^2}+\frac {1+\log (2)}{(-2+x) \log (x)}\right ) \, dx}{2+\log (4)}\\ &=2 \int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2} \, dx+\frac {2 \int \frac {(-3+x) x^2}{(-2+x)^2} \, dx}{2+\log (4)}+\frac {(2 (1+\log (2))) \int \frac {1}{(-2+x) \log (x)} \, dx}{2+\log (4)}\\ &=-\frac {x^3}{(2-x) (2+\log (4))}+2 \int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-2+x)^2} \, dx+\frac {(2 (1+\log (2))) \int \frac {1}{(-2+x) \log (x)} \, dx}{2+\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 42, normalized size = 1.45 \begin {gather*} \frac {8-4 x+x^3-2 (2+\log (4)) \log \left (\frac {1}{\log (x)}\right )+(-2+x) (2+\log (4)) \log (\log (x))}{(-2+x) (2+\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 34, normalized size = 1.17 \begin {gather*} \frac {x^{3} - 2 \, {\left (x \log \relax (2) + x\right )} \log \left (\frac {1}{\log \relax (x)}\right ) - 4 \, x + 8}{2 \, {\left ({\left (x - 2\right )} \log \relax (2) + x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 48, normalized size = 1.66 \begin {gather*} \frac {x^{2}}{2 \, {\left (\log \relax (2) + 1\right )}} + \frac {x}{\log \relax (2) + 1} + \frac {2 \, \log \left (\log \relax (x)\right )}{x - 2} + \frac {4}{x \log \relax (2) + x - 2 \, \log \relax (2) - 2} + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 61, normalized size = 2.10
method | result | size |
risch | \(\frac {2 \ln \left (\ln \relax (x )\right )}{x -2}+\frac {2 \ln \relax (2) \ln \left (\ln \relax (x )\right ) x +x^{3}-4 \ln \relax (2) \ln \left (\ln \relax (x )\right )+2 x \ln \left (\ln \relax (x )\right )-4 \ln \left (\ln \relax (x )\right )-4 x +8}{2 x \ln \relax (2)-4 \ln \relax (2)+2 x -4}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 34, normalized size = 1.17 \begin {gather*} \frac {x^{3} + 2 \, x {\left (\log \relax (2) + 1\right )} \log \left (\log \relax (x)\right ) - 4 \, x + 8}{2 \, {\left (x {\left (\log \relax (2) + 1\right )} - 2 \, \log \relax (2) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {2\,x-\ln \relax (x)\,\left (6\,x^2-2\,x^3\right )+2\,\ln \relax (2)\,\left (x-2\right )+\ln \left (\frac {1}{\ln \relax (x)}\right )\,\ln \relax (x)\,\left (4\,\ln \relax (2)+4\right )-4}{\ln \relax (x)\,\left (2\,x^2-8\,x+2\,\ln \relax (2)\,\left (x^2-4\,x+4\right )+8\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.52, size = 48, normalized size = 1.66 \begin {gather*} \frac {x^{2}}{2 \log {\relax (2 )} + 2} + \frac {x}{\log {\relax (2 )} + 1} + \log {\left (\log {\relax (x )} \right )} + \frac {4}{x \left (\log {\relax (2 )} + 1\right ) - 2 - 2 \log {\relax (2 )}} - \frac {2 \log {\left (\frac {1}{\log {\relax (x )}} \right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________