Optimal. Leaf size=20 \[ -3 x+e^{\frac {5 e^{-x}}{x}} x \log (3) \]
________________________________________________________________________________________
Rubi [F] time = 0.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (-3 e^x x+e^{\frac {5 e^{-x}}{x}} \left ((-5-5 x) \log (3)+e^x x \log (3)\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3+\frac {e^{\frac {5 e^{-x}}{x}-x} \left (-5+\left (-5+e^x\right ) x\right ) \log (3)}{x}\right ) \, dx\\ &=-3 x+\log (3) \int \frac {e^{\frac {5 e^{-x}}{x}-x} \left (-5+\left (-5+e^x\right ) x\right )}{x} \, dx\\ &=-3 x+\log (3) \int \left (e^{\frac {5 e^{-x}}{x}}-\frac {5 e^{\frac {5 e^{-x}}{x}-x} (1+x)}{x}\right ) \, dx\\ &=-3 x+\log (3) \int e^{\frac {5 e^{-x}}{x}} \, dx-(5 \log (3)) \int \frac {e^{\frac {5 e^{-x}}{x}-x} (1+x)}{x} \, dx\\ &=-3 x+\log (3) \int e^{\frac {5 e^{-x}}{x}} \, dx-(5 \log (3)) \int \left (e^{\frac {5 e^{-x}}{x}-x}+\frac {e^{\frac {5 e^{-x}}{x}-x}}{x}\right ) \, dx\\ &=-3 x+\log (3) \int e^{\frac {5 e^{-x}}{x}} \, dx-(5 \log (3)) \int e^{\frac {5 e^{-x}}{x}-x} \, dx-(5 \log (3)) \int \frac {e^{\frac {5 e^{-x}}{x}-x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 1.00 \begin {gather*} -3 x+e^{\frac {5 e^{-x}}{x}} x \log (3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 18, normalized size = 0.90 \begin {gather*} x e^{\left (\frac {5 \, e^{\left (-x\right )}}{x}\right )} \log \relax (3) - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 18, normalized size = 0.90 \begin {gather*} x e^{\left (\frac {5 \, e^{\left (-x\right )}}{x}\right )} \log \relax (3) - 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.95
method | result | size |
risch | \(\ln \relax (3) x \,{\mathrm e}^{\frac {5 \,{\mathrm e}^{-x}}{x}}-3 x\) | \(19\) |
norman | \(\left ({\mathrm e}^{x} \ln \relax (3) {\mathrm e}^{\frac {5 \,{\mathrm e}^{-x}}{x}} x -3 \,{\mathrm e}^{x} x \right ) {\mathrm e}^{-x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -3 \, x + \int \frac {{\left (x e^{x} \log \relax (3) - 5 \, x \log \relax (3) - 5 \, \log \relax (3)\right )} e^{\left (-x + \frac {5 \, e^{\left (-x\right )}}{x}\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.73, size = 17, normalized size = 0.85 \begin {gather*} x\,\left ({\mathrm {e}}^{\frac {5\,{\mathrm {e}}^{-x}}{x}}\,\ln \relax (3)-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.43, size = 15, normalized size = 0.75 \begin {gather*} x e^{\frac {5 e^{- x}}{x}} \log {\relax (3 )} - 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________