Optimal. Leaf size=29 \[ \frac {\left (1-\frac {x^2}{3}\right ) \left (2+\frac {1}{2} \left (e^4+2 x\right )\right )}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 14} \begin {gather*} -\frac {x^2}{15}-\frac {1}{30} \left (4+e^4\right ) x+\frac {4+e^4}{10 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{30} \int \frac {-12-4 x^2-4 x^3+e^4 \left (-3-x^2\right )}{x^2} \, dx\\ &=\frac {1}{30} \int \left (-4 \left (1+\frac {e^4}{4}\right )-\frac {3 \left (4+e^4\right )}{x^2}-4 x\right ) \, dx\\ &=\frac {4+e^4}{10 x}-\frac {1}{30} \left (4+e^4\right ) x-\frac {x^2}{15}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 28, normalized size = 0.97 \begin {gather*} \frac {1}{30} \left (\frac {3 \left (4+e^4\right )}{x}-\left (4+e^4\right ) x-2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 25, normalized size = 0.86 \begin {gather*} -\frac {2 \, x^{3} + 4 \, x^{2} + {\left (x^{2} - 3\right )} e^{4} - 12}{30 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 23, normalized size = 0.79 \begin {gather*} -\frac {1}{15} \, x^{2} - \frac {1}{30} \, x e^{4} - \frac {2}{15} \, x + \frac {e^{4} + 4}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 0.90
method | result | size |
default | \(-\frac {x^{2}}{15}-\frac {x \,{\mathrm e}^{4}}{30}-\frac {2 x}{15}-\frac {-3 \,{\mathrm e}^{4}-12}{30 x}\) | \(26\) |
risch | \(-\frac {x \,{\mathrm e}^{4}}{30}-\frac {x^{2}}{15}-\frac {2 x}{15}+\frac {{\mathrm e}^{4}}{10 x}+\frac {2}{5 x}\) | \(27\) |
norman | \(\frac {\left (-\frac {2}{15}-\frac {{\mathrm e}^{4}}{30}\right ) x^{2}-\frac {x^{3}}{15}+\frac {{\mathrm e}^{4}}{10}+\frac {2}{5}}{x}\) | \(30\) |
gosper | \(-\frac {x^{2} {\mathrm e}^{4}+2 x^{3}-3 \,{\mathrm e}^{4}+4 x^{2}-12}{30 x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 22, normalized size = 0.76 \begin {gather*} -\frac {1}{15} \, x^{2} - \frac {1}{30} \, x {\left (e^{4} + 4\right )} + \frac {e^{4} + 4}{10 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 25, normalized size = 0.86 \begin {gather*} \frac {\frac {{\mathrm {e}}^4}{10}+\frac {2}{5}}{x}-\frac {x^2}{15}-x\,\left (\frac {{\mathrm {e}}^4}{30}+\frac {2}{15}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 26, normalized size = 0.90 \begin {gather*} - \frac {x^{2}}{15} - \frac {x \left (4 + e^{4}\right )}{30} - \frac {- 3 e^{4} - 12}{30 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________