Optimal. Leaf size=28 \[ \frac {e^{x (1+x)} \log ^2(e x)}{x \left (-2+x-\log \left (x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\log (e x) \left (e^{x+x^2} (-4+2 x)-2 e^{x+x^2} \log \left (x^2\right )\right )+\log ^2(e x) \left (e^{x+x^2} \left (4-4 x-3 x^2+2 x^3\right )+e^{x+x^2} \left (1-x-2 x^2\right ) \log \left (x^2\right )\right )}{4 x^2-4 x^3+x^4+\left (4 x^2-2 x^3\right ) \log \left (x^2\right )+x^2 \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{x+x^2} (1+\log (x)) \left (2 \left (-2+x-\log \left (x^2\right )\right )+(1+\log (x)) \left (4-4 x-3 x^2+2 x^3-\left (-1+x+2 x^2\right ) \log \left (x^2\right )\right )\right )}{x^2 \left (2-x+\log \left (x^2\right )\right )^2} \, dx\\ &=\int \left (-\frac {e^{x+x^2} (-2+x) (1+\log (x))^2}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2}+\frac {e^{x+x^2} (1+\log (x)) \left (1+x+2 x^2-\log (x)+x \log (x)+2 x^2 \log (x)\right )}{x^2 \left (-2+x-\log \left (x^2\right )\right )}\right ) \, dx\\ &=-\int \frac {e^{x+x^2} (-2+x) (1+\log (x))^2}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+\int \frac {e^{x+x^2} (1+\log (x)) \left (1+x+2 x^2-\log (x)+x \log (x)+2 x^2 \log (x)\right )}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx\\ &=-\int \left (-\frac {2 e^{x+x^2} (1+\log (x))^2}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2}+\frac {e^{x+x^2} (1+\log (x))^2}{x \left (-2+x-\log \left (x^2\right )\right )^2}\right ) \, dx+\int \left (\frac {2 e^{x+x^2}}{-2+x-\log \left (x^2\right )}+\frac {e^{x+x^2}}{x^2 \left (-2+x-\log \left (x^2\right )\right )}+\frac {e^{x+x^2}}{x \left (-2+x-\log \left (x^2\right )\right )}+\frac {4 e^{x+x^2} \log (x)}{-2+x-\log \left (x^2\right )}+\frac {2 e^{x+x^2} \log (x)}{x \left (-2+x-\log \left (x^2\right )\right )}+\frac {2 e^{x+x^2} \log ^2(x)}{-2+x-\log \left (x^2\right )}-\frac {e^{x+x^2} \log ^2(x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )}+\frac {e^{x+x^2} \log ^2(x)}{x \left (-2+x-\log \left (x^2\right )\right )}\right ) \, dx\\ &=2 \int \frac {e^{x+x^2} (1+\log (x))^2}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+2 \int \frac {e^{x+x^2}}{-2+x-\log \left (x^2\right )} \, dx+2 \int \frac {e^{x+x^2} \log (x)}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx+2 \int \frac {e^{x+x^2} \log ^2(x)}{-2+x-\log \left (x^2\right )} \, dx+4 \int \frac {e^{x+x^2} \log (x)}{-2+x-\log \left (x^2\right )} \, dx-\int \frac {e^{x+x^2} (1+\log (x))^2}{x \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+\int \frac {e^{x+x^2}}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx+\int \frac {e^{x+x^2}}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx-\int \frac {e^{x+x^2} \log ^2(x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx+\int \frac {e^{x+x^2} \log ^2(x)}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx\\ &=2 \int \left (\frac {e^{x+x^2}}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2}+\frac {2 e^{x+x^2} \log (x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2}+\frac {e^{x+x^2} \log ^2(x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2}\right ) \, dx+2 \int \frac {e^{x+x^2}}{-2+x-\log \left (x^2\right )} \, dx+2 \int \frac {e^{x+x^2} \log (x)}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx+2 \int \frac {e^{x+x^2} \log ^2(x)}{-2+x-\log \left (x^2\right )} \, dx+4 \int \frac {e^{x+x^2} \log (x)}{-2+x-\log \left (x^2\right )} \, dx-\int \left (\frac {e^{x+x^2}}{x \left (-2+x-\log \left (x^2\right )\right )^2}+\frac {2 e^{x+x^2} \log (x)}{x \left (-2+x-\log \left (x^2\right )\right )^2}+\frac {e^{x+x^2} \log ^2(x)}{x \left (-2+x-\log \left (x^2\right )\right )^2}\right ) \, dx+\int \frac {e^{x+x^2}}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx+\int \frac {e^{x+x^2}}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx-\int \frac {e^{x+x^2} \log ^2(x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx+\int \frac {e^{x+x^2} \log ^2(x)}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx\\ &=2 \int \frac {e^{x+x^2}}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2} \, dx-2 \int \frac {e^{x+x^2} \log (x)}{x \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+2 \int \frac {e^{x+x^2} \log ^2(x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+2 \int \frac {e^{x+x^2}}{-2+x-\log \left (x^2\right )} \, dx+2 \int \frac {e^{x+x^2} \log (x)}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx+2 \int \frac {e^{x+x^2} \log ^2(x)}{-2+x-\log \left (x^2\right )} \, dx+4 \int \frac {e^{x+x^2} \log (x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+4 \int \frac {e^{x+x^2} \log (x)}{-2+x-\log \left (x^2\right )} \, dx-\int \frac {e^{x+x^2}}{x \left (-2+x-\log \left (x^2\right )\right )^2} \, dx-\int \frac {e^{x+x^2} \log ^2(x)}{x \left (-2+x-\log \left (x^2\right )\right )^2} \, dx+\int \frac {e^{x+x^2}}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx+\int \frac {e^{x+x^2}}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx-\int \frac {e^{x+x^2} \log ^2(x)}{x^2 \left (-2+x-\log \left (x^2\right )\right )} \, dx+\int \frac {e^{x+x^2} \log ^2(x)}{x \left (-2+x-\log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.14, size = 28, normalized size = 1.00 \begin {gather*} \frac {e^{x+x^2} (1+\log (x))^2}{x \left (-2+x-\log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 52, normalized size = 1.86 \begin {gather*} \frac {e^{\left (x^{2} + x\right )} \log \left (x^{2}\right )^{2} + 4 \, e^{\left (x^{2} + x\right )} \log \left (x^{2}\right ) + 4 \, e^{\left (x^{2} + x\right )}}{4 \, {\left (x^{2} - x \log \left (x^{2}\right ) - 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 43, normalized size = 1.54 \begin {gather*} \frac {e^{\left (x^{2} + x\right )} \log \relax (x)^{2} + 2 \, e^{\left (x^{2} + x\right )} \log \relax (x) + e^{\left (x^{2} + x\right )}}{x^{2} - 2 \, x \log \relax (x) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.35, size = 305, normalized size = 10.89
method | result | size |
risch | \(-\frac {{\mathrm e}^{\left (x +1\right ) x} \ln \relax (x )}{2 x}-\frac {\left (i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 x \right ) {\mathrm e}^{\left (x +1\right ) x}}{8 x}+\frac {\left (4 x^{2}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+4 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-6 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+4 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}\right ) {\mathrm e}^{\left (x +1\right ) x}}{8 x \left (i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 x -4 \ln \relax (x )-4\right )}\) | \(305\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 31, normalized size = 1.11 \begin {gather*} \frac {{\left (\log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )} e^{\left (x^{2} + x\right )}}{x^{2} - 2 \, x \log \relax (x) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\ln \left (x\,\mathrm {e}\right )}^2\,\left ({\mathrm {e}}^{x^2+x}\,\left (-2\,x^3+3\,x^2+4\,x-4\right )+\ln \left (x^2\right )\,{\mathrm {e}}^{x^2+x}\,\left (2\,x^2+x-1\right )\right )-\ln \left (x\,\mathrm {e}\right )\,\left ({\mathrm {e}}^{x^2+x}\,\left (2\,x-4\right )-2\,\ln \left (x^2\right )\,{\mathrm {e}}^{x^2+x}\right )}{\ln \left (x^2\right )\,\left (4\,x^2-2\,x^3\right )+4\,x^2-4\,x^3+x^4+x^2\,{\ln \left (x^2\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 37, normalized size = 1.32 \begin {gather*} \frac {\left (\log {\left (x^{2} \right )}^{2} + 4 \log {\left (x^{2} \right )} + 4\right ) e^{x^{2} + x}}{4 x^{2} - 4 x \log {\left (x^{2} \right )} - 8 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________