Optimal. Leaf size=20 \[ e^{5+x+\frac {1}{4} \left (4+6 e^x+x+x^4\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{4} \left (x^4+5 x+6 e^x+24\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int e^{\frac {1}{4} \left (24+6 e^x+5 x+x^4\right )} \left (5+6 e^x+4 x^3\right ) \, dx\\ &=e^{\frac {1}{4} \left (24+6 e^x+5 x+x^4\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 19, normalized size = 0.95 \begin {gather*} e^{\frac {1}{4} \left (24+6 e^x+5 x+x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.60, size = 15, normalized size = 0.75 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} + \frac {5}{4} \, x + \frac {3}{2} \, e^{x} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 15, normalized size = 0.75 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} + \frac {5}{4} \, x + \frac {3}{2} \, e^{x} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.80
method | result | size |
norman | \({\mathrm e}^{\frac {3 \,{\mathrm e}^{x}}{2}+\frac {x^{4}}{4}+\frac {5 x}{4}+6}\) | \(16\) |
risch | \({\mathrm e}^{\frac {3 \,{\mathrm e}^{x}}{2}+\frac {x^{4}}{4}+\frac {5 x}{4}+6}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 15, normalized size = 0.75 \begin {gather*} e^{\left (\frac {1}{4} \, x^{4} + \frac {5}{4} \, x + \frac {3}{2} \, e^{x} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.73, size = 18, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{\frac {5\,x}{4}}\,{\mathrm {e}}^6\,{\mathrm {e}}^{\frac {x^4}{4}}\,{\mathrm {e}}^{\frac {3\,{\mathrm {e}}^x}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.95 \begin {gather*} e^{\frac {x^{4}}{4} + \frac {5 x}{4} + \frac {3 e^{x}}{2} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________