Optimal. Leaf size=19 \[ \log \left (\frac {x}{e^{24}+e^{-e^2+x}+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{27}+e^{3-e^2+x} (1-x)}{e^{27} x+e^{3-e^2+x} x+e^3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1-x}{x}+\frac {e^{e^2} \left (-1+e^{24}+x\right )}{e^{24+e^2}+e^x+e^{e^2} x}\right ) \, dx\\ &=e^{e^2} \int \frac {-1+e^{24}+x}{e^{24+e^2}+e^x+e^{e^2} x} \, dx+\int \frac {1-x}{x} \, dx\\ &=e^{e^2} \int \left (-\frac {1-e^{24}}{e^{24+e^2}+e^x+e^{e^2} x}+\frac {x}{e^{24+e^2}+e^x+e^{e^2} x}\right ) \, dx+\int \left (-1+\frac {1}{x}\right ) \, dx\\ &=-x+\log (x)+e^{e^2} \int \frac {x}{e^{24+e^2}+e^x+e^{e^2} x} \, dx-\left (e^{e^2} \left (1-e^{24}\right )\right ) \int \frac {1}{e^{24+e^2}+e^x+e^{e^2} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 1.47 \begin {gather*} \log (x)-\log \left (e^{48+e^2}+e^{24+x}+e^{24+e^2} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 21, normalized size = 1.11 \begin {gather*} -\log \left (x e^{3} + e^{27} + e^{\left (x - e^{2} + 3\right )}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 21, normalized size = 1.11 \begin {gather*} -\log \left (x e^{3} + e^{27} + e^{\left (x - e^{2} + 3\right )}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 22, normalized size = 1.16
method | result | size |
risch | \(\ln \relax (x )-{\mathrm e}^{2}-\ln \left ({\mathrm e}^{24}+x +{\mathrm e}^{x -{\mathrm e}^{2}}\right )\) | \(22\) |
norman | \(-\ln \left ({\mathrm e}^{3} {\mathrm e}^{x -{\mathrm e}^{2}}+x \,{\mathrm e}^{3}+{\mathrm e}^{27}\right )+\ln \relax (x )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 19, normalized size = 1.00 \begin {gather*} -\log \left (x e^{\left (e^{2}\right )} + e^{x} + e^{\left (e^{2} + 24\right )}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.29, size = 18, normalized size = 0.95 \begin {gather*} \ln \relax (x)-\ln \left (x+{\mathrm {e}}^{24}+{\mathrm {e}}^{-{\mathrm {e}}^2}\,{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.79 \begin {gather*} \log {\relax (x )} - \log {\left (x + e^{x - e^{2}} + e^{24} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________