Optimal. Leaf size=22 \[ 16 \left (-44 x+x^2+\log (x)\right )^2 \left (-1+\log \left (\log ^2(x)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-123904 x^2+5632 x^3-64 x^4+\left (4224 x+61856 x^2-4224 x^3+64 x^4\right ) \log (x)+\left (-32-1408 x+64 x^2\right ) \log ^2(x)+\left (123904 x^2-5632 x^3+64 x^4+\left (-2816 x-123840 x^2+8448 x^3-128 x^4\right ) \log (x)+\left (2816 x-128 x^2\right ) \log ^2(x)\right ) \log \left (\log ^2(x)\right )+\left (\left (-1408 x+61984 x^2-4224 x^3+64 x^4\right ) \log (x)+\left (32-1408 x+64 x^2\right ) \log ^2(x)\right ) \log ^2\left (\log ^2(x)\right )}{x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 ((-44+x) x+\log (x)) \left (1-\log \left (\log ^2(x)\right )\right ) \left (-2 (-44+x) x-\log (x) \left (1+44 x-2 x^2+\left (1-44 x+2 x^2\right ) \log \left (\log ^2(x)\right )\right )\right )}{x \log (x)} \, dx\\ &=32 \int \frac {((-44+x) x+\log (x)) \left (1-\log \left (\log ^2(x)\right )\right ) \left (-2 (-44+x) x-\log (x) \left (1+44 x-2 x^2+\left (1-44 x+2 x^2\right ) \log \left (\log ^2(x)\right )\right )\right )}{x \log (x)} \, dx\\ &=32 \int \left (\frac {-3872 x^2+176 x^3-2 x^4+132 x \log (x)+1933 x^2 \log (x)-132 x^3 \log (x)+2 x^4 \log (x)-\log ^2(x)-44 x \log ^2(x)+2 x^2 \log ^2(x)}{x \log (x)}-\frac {2 \left (-1936 x+88 x^2-x^3+44 \log (x)+1935 x \log (x)-132 x^2 \log (x)+2 x^3 \log (x)-44 \log ^2(x)+2 x \log ^2(x)\right ) \log \left (\log ^2(x)\right )}{\log (x)}+\frac {\left (1-44 x+2 x^2\right ) \left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right )}{x}\right ) \, dx\\ &=32 \int \frac {-3872 x^2+176 x^3-2 x^4+132 x \log (x)+1933 x^2 \log (x)-132 x^3 \log (x)+2 x^4 \log (x)-\log ^2(x)-44 x \log ^2(x)+2 x^2 \log ^2(x)}{x \log (x)} \, dx+32 \int \frac {\left (1-44 x+2 x^2\right ) \left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right )}{x} \, dx-64 \int \frac {\left (-1936 x+88 x^2-x^3+44 \log (x)+1935 x \log (x)-132 x^2 \log (x)+2 x^3 \log (x)-44 \log ^2(x)+2 x \log ^2(x)\right ) \log \left (\log ^2(x)\right )}{\log (x)} \, dx\\ &=32 \int \left (132+1933 x-132 x^2+2 x^3-\frac {2 (-44+x)^2 x}{\log (x)}+\left (-44-\frac {1}{x}+2 x\right ) \log (x)\right ) \, dx+32 \int \left (-44 \left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right )+\frac {\left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right )}{x}+2 x \left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right )\right ) \, dx-64 \int \frac {\left (-(-44+x)^2 x+\left (44+1935 x-132 x^2+2 x^3\right ) \log (x)+2 (-22+x) \log ^2(x)\right ) \log \left (\log ^2(x)\right )}{\log (x)} \, dx\\ &=4224 x+30928 x^2-1408 x^3+16 x^4+32 \int \left (-44-\frac {1}{x}+2 x\right ) \log (x) \, dx+32 \int \frac {\left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right )}{x} \, dx-64 \int \frac {(-44+x)^2 x}{\log (x)} \, dx+64 \int x \left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right ) \, dx-64 \int \left (44 \log \left (\log ^2(x)\right )+1935 x \log \left (\log ^2(x)\right )-132 x^2 \log \left (\log ^2(x)\right )+2 x^3 \log \left (\log ^2(x)\right )-\frac {1936 x \log \left (\log ^2(x)\right )}{\log (x)}+\frac {88 x^2 \log \left (\log ^2(x)\right )}{\log (x)}-\frac {x^3 \log \left (\log ^2(x)\right )}{\log (x)}-44 \log (x) \log \left (\log ^2(x)\right )+2 x \log (x) \log \left (\log ^2(x)\right )\right ) \, dx-1408 \int \left (-44 x+x^2+\log (x)\right ) \log ^2\left (\log ^2(x)\right ) \, dx\\ &=4224 x+30928 x^2-1408 x^3+16 x^4+32 \int \left (-44 \log (x)-\frac {\log (x)}{x}+2 x \log (x)\right ) \, dx+32 \int \left (-44 \log ^2\left (\log ^2(x)\right )+x \log ^2\left (\log ^2(x)\right )+\frac {\log (x) \log ^2\left (\log ^2(x)\right )}{x}\right ) \, dx-64 \int \left (\frac {1936 x}{\log (x)}-\frac {88 x^2}{\log (x)}+\frac {x^3}{\log (x)}\right ) \, dx+64 \int \frac {x^3 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+64 \int \left (-44 x^2 \log ^2\left (\log ^2(x)\right )+x^3 \log ^2\left (\log ^2(x)\right )+x \log (x) \log ^2\left (\log ^2(x)\right )\right ) \, dx-128 \int x^3 \log \left (\log ^2(x)\right ) \, dx-128 \int x \log (x) \log \left (\log ^2(x)\right ) \, dx-1408 \int \left (-44 x \log ^2\left (\log ^2(x)\right )+x^2 \log ^2\left (\log ^2(x)\right )+\log (x) \log ^2\left (\log ^2(x)\right )\right ) \, dx-2816 \int \log \left (\log ^2(x)\right ) \, dx+2816 \int \log (x) \log \left (\log ^2(x)\right ) \, dx-5632 \int \frac {x^2 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+8448 \int x^2 \log \left (\log ^2(x)\right ) \, dx-123840 \int x \log \left (\log ^2(x)\right ) \, dx+123904 \int \frac {x \log \left (\log ^2(x)\right )}{\log (x)} \, dx\\ &=4224 x+30928 x^2-1408 x^3+16 x^4-2816 x \log \left (\log ^2(x)\right )-61920 x^2 \log \left (\log ^2(x)\right )+2816 x^3 \log \left (\log ^2(x)\right )-32 x^4 \log \left (\log ^2(x)\right )-32 \int \frac {\log (x)}{x} \, dx+32 \int x \log ^2\left (\log ^2(x)\right ) \, dx+32 \int \frac {\log (x) \log ^2\left (\log ^2(x)\right )}{x} \, dx+64 \int x \log (x) \, dx+64 \int \frac {x^3 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+64 \int x^3 \log ^2\left (\log ^2(x)\right ) \, dx+64 \int x \log (x) \log ^2\left (\log ^2(x)\right ) \, dx-128 \int x \log (x) \log \left (\log ^2(x)\right ) \, dx-1408 \int \log (x) \, dx-1408 \int \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int \log (x) \log ^2\left (\log ^2(x)\right ) \, dx+2816 \int \log (x) \log \left (\log ^2(x)\right ) \, dx-2816 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx+5632 \int \frac {1}{\log (x)} \, dx-5632 \int \frac {x^2 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+61952 \int x \log ^2\left (\log ^2(x)\right ) \, dx+123840 \int \frac {x}{\log (x)} \, dx-123904 \int \frac {x}{\log (x)} \, dx+123904 \int \frac {x \log \left (\log ^2(x)\right )}{\log (x)} \, dx\\ &=5632 x+30912 x^2-1408 x^3+16 x^4-1408 x \log (x)+32 x^2 \log (x)-16 \log ^2(x)-2816 x \log \left (\log ^2(x)\right )-61920 x^2 \log \left (\log ^2(x)\right )+2816 x^3 \log \left (\log ^2(x)\right )-32 x^4 \log \left (\log ^2(x)\right )+5632 \text {li}(x)+32 \int x \log ^2\left (\log ^2(x)\right ) \, dx+32 \operatorname {Subst}\left (\int x \log ^2\left (x^2\right ) \, dx,x,\log (x)\right )+64 \int \frac {x^3 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+64 \int x^3 \log ^2\left (\log ^2(x)\right ) \, dx+64 \int x \log (x) \log ^2\left (\log ^2(x)\right ) \, dx-128 \int x \log (x) \log \left (\log ^2(x)\right ) \, dx-1408 \int \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int \log (x) \log ^2\left (\log ^2(x)\right ) \, dx+2816 \int \log (x) \log \left (\log ^2(x)\right ) \, dx-2816 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-5632 \int \frac {x^2 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+61952 \int x \log ^2\left (\log ^2(x)\right ) \, dx+123840 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )+123904 \int \frac {x \log \left (\log ^2(x)\right )}{\log (x)} \, dx-123904 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=5632 x+30912 x^2-1408 x^3+16 x^4-64 \text {Ei}(2 \log (x))-1408 x \log (x)+32 x^2 \log (x)-16 \log ^2(x)-2816 x \log \left (\log ^2(x)\right )-61920 x^2 \log \left (\log ^2(x)\right )+2816 x^3 \log \left (\log ^2(x)\right )-32 x^4 \log \left (\log ^2(x)\right )+16 \log ^2(x) \log ^2\left (\log ^2(x)\right )+5632 \text {li}(x)+32 \int x \log ^2\left (\log ^2(x)\right ) \, dx+64 \int \frac {x^3 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+64 \int x^3 \log ^2\left (\log ^2(x)\right ) \, dx+64 \int x \log (x) \log ^2\left (\log ^2(x)\right ) \, dx-64 \operatorname {Subst}\left (\int x \log \left (x^2\right ) \, dx,x,\log (x)\right )-128 \int x \log (x) \log \left (\log ^2(x)\right ) \, dx-1408 \int \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int \log (x) \log ^2\left (\log ^2(x)\right ) \, dx+2816 \int \log (x) \log \left (\log ^2(x)\right ) \, dx-2816 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-5632 \int \frac {x^2 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+61952 \int x \log ^2\left (\log ^2(x)\right ) \, dx+123904 \int \frac {x \log \left (\log ^2(x)\right )}{\log (x)} \, dx\\ &=5632 x+30912 x^2-1408 x^3+16 x^4-64 \text {Ei}(2 \log (x))-1408 x \log (x)+32 x^2 \log (x)+16 \log ^2(x)-2816 x \log \left (\log ^2(x)\right )-61920 x^2 \log \left (\log ^2(x)\right )+2816 x^3 \log \left (\log ^2(x)\right )-32 x^4 \log \left (\log ^2(x)\right )-32 \log ^2(x) \log \left (\log ^2(x)\right )+16 \log ^2(x) \log ^2\left (\log ^2(x)\right )+5632 \text {li}(x)+32 \int x \log ^2\left (\log ^2(x)\right ) \, dx+64 \int \frac {x^3 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+64 \int x^3 \log ^2\left (\log ^2(x)\right ) \, dx+64 \int x \log (x) \log ^2\left (\log ^2(x)\right ) \, dx-128 \int x \log (x) \log \left (\log ^2(x)\right ) \, dx-1408 \int \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-1408 \int \log (x) \log ^2\left (\log ^2(x)\right ) \, dx+2816 \int \log (x) \log \left (\log ^2(x)\right ) \, dx-2816 \int x^2 \log ^2\left (\log ^2(x)\right ) \, dx-5632 \int \frac {x^2 \log \left (\log ^2(x)\right )}{\log (x)} \, dx+61952 \int x \log ^2\left (\log ^2(x)\right ) \, dx+123904 \int \frac {x \log \left (\log ^2(x)\right )}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 21, normalized size = 0.95 \begin {gather*} 16 ((-44+x) x+\log (x))^2 \left (-1+\log \left (\log ^2(x)\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 107, normalized size = 4.86 \begin {gather*} 16 \, x^{4} - 1408 \, x^{3} + 16 \, {\left (x^{4} - 88 \, x^{3} + 1936 \, x^{2} + 2 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (\log \relax (x)^{2}\right )^{2} + 30976 \, x^{2} - 32 \, {\left (x^{4} - 88 \, x^{3} + 1936 \, x^{2} + 2 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (\log \relax (x)^{2}\right ) + 32 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.96, size = 107, normalized size = 4.86 \begin {gather*} 16 \, x^{4} - 1408 \, x^{3} + 16 \, {\left (x^{4} - 88 \, x^{3} + 1936 \, x^{2} + 2 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (\log \relax (x)^{2}\right )^{2} + 30976 \, x^{2} - 32 \, {\left (x^{4} - 88 \, x^{3} + 1936 \, x^{2} + 2 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (\log \relax (x)^{2}\right ) + 32 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + 16 \, \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.49, size = 1608, normalized size = 73.09
method | result | size |
risch | \(\text {Expression too large to display}\) | \(1608\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -32 \, x^{4} \log \left (\log \relax (x)^{2}\right ) + 16 \, x^{4} + 2816 \, x^{3} \log \left (\log \relax (x)^{2}\right ) - 1408 \, x^{3} - 61920 \, x^{2} \log \left (\log \relax (x)^{2}\right ) + 32 \, x^{2} \log \relax (x) + 64 \, {\left (x^{4} - 88 \, x^{3} + 1936 \, x^{2} + 2 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (\log \relax (x)\right )^{2} + 30976 \, x^{2} - 2816 \, x \log \left (\log \relax (x)^{2}\right ) - 1408 \, x \log \relax (x) + 16 \, \log \relax (x)^{2} - 64 \, {\left (x^{2} + 2 \, {\left (x^{2} - 44 \, x\right )} \log \relax (x) + \log \relax (x)^{2} - 88 \, x\right )} \log \left (\log \relax (x)\right ) - 64 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) + 5632 \, {\rm Ei}\left (\log \relax (x)\right ) + 32 \, \int \frac {2 \, {\left (x - 88\right )}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 120, normalized size = 5.45 \begin {gather*} 16\,{\ln \relax (x)}^2-\ln \left ({\ln \relax (x)}^2\right )\,\left (32\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (2816\,x-64\,x^2\right )+61952\,x^2-2816\,x^3+32\,x^4\right )-\ln \relax (x)\,\left (1408\,x-32\,x^2\right )+{\ln \left ({\ln \relax (x)}^2\right )}^2\,\left (16\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (1408\,x-32\,x^2\right )+30976\,x^2-1408\,x^3+16\,x^4\right )+30976\,x^2-1408\,x^3+16\,x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.64, size = 122, normalized size = 5.55 \begin {gather*} 16 x^{4} - 1408 x^{3} + 30976 x^{2} + \left (32 x^{2} - 1408 x\right ) \log {\relax (x )} + \left (- 32 x^{4} + 2816 x^{3} - 64 x^{2} \log {\relax (x )} - 61952 x^{2} + 2816 x \log {\relax (x )} - 32 \log {\relax (x )}^{2}\right ) \log {\left (\log {\relax (x )}^{2} \right )} + \left (16 x^{4} - 1408 x^{3} + 32 x^{2} \log {\relax (x )} + 30976 x^{2} - 1408 x \log {\relax (x )} + 16 \log {\relax (x )}^{2}\right ) \log {\left (\log {\relax (x )}^{2} \right )}^{2} + 16 \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________