Optimal. Leaf size=21 \[ \frac {6+e^x-\frac {e^{2 x}}{2}-4 x}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 4, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {14, 2197} \begin {gather*} \frac {e^x}{x}-\frac {e^{2 x}}{2 x}+\frac {6}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {6}{x^2}+\frac {e^x (-1+x)}{x^2}-\frac {e^{2 x} (-1+2 x)}{2 x^2}\right ) \, dx\\ &=\frac {6}{x}-\frac {1}{2} \int \frac {e^{2 x} (-1+2 x)}{x^2} \, dx+\int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {6}{x}+\frac {e^x}{x}-\frac {e^{2 x}}{2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 1.00 \begin {gather*} \frac {12+2 e^x-e^{2 x}}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 15, normalized size = 0.71 \begin {gather*} -\frac {e^{\left (2 \, x\right )} - 2 \, e^{x} - 12}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 15, normalized size = 0.71 \begin {gather*} -\frac {e^{\left (2 \, x\right )} - 2 \, e^{x} - 12}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.71
method | result | size |
norman | \(\frac {6-\frac {{\mathrm e}^{2 x}}{2}+{\mathrm e}^{x}}{x}\) | \(15\) |
default | \(\frac {6}{x}+\frac {{\mathrm e}^{x}}{x}-\frac {{\mathrm e}^{2 x}}{2 x}\) | \(22\) |
risch | \(\frac {6}{x}+\frac {{\mathrm e}^{x}}{x}-\frac {{\mathrm e}^{2 x}}{2 x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 26, normalized size = 1.24 \begin {gather*} \frac {6}{x} - {\rm Ei}\left (2 \, x\right ) + {\rm Ei}\relax (x) - \Gamma \left (-1, -x\right ) + \Gamma \left (-1, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 17, normalized size = 0.81 \begin {gather*} \frac {2\,{\mathrm {e}}^x-{\mathrm {e}}^{2\,x}+12}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 20, normalized size = 0.95 \begin {gather*} \frac {6}{x} + \frac {- x e^{2 x} + 2 x e^{x}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________