Optimal. Leaf size=33 \[ -x+\frac {e^{\frac {5}{3-e^2}}}{x \left (x^2+\frac {\log (3)}{4}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 56, normalized size of antiderivative = 1.70, number of steps used = 7, number of rules used = 6, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.076, Rules used = {12, 1594, 28, 1805, 1253, 14} \begin {gather*} -\frac {64 e^{\frac {5}{3-e^2}} x}{\log (3) \left (16 x^2+\log (81)\right )}-x+\frac {4 e^{\frac {5}{3-e^2}}}{x \log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 28
Rule 1253
Rule 1594
Rule 1805
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {5}{3-e^2}} \int \frac {-48 x^2-4 \log (3)+e^{\frac {5}{-3+e^2}} \left (-16 x^6-8 x^4 \log (3)-x^2 \log ^2(3)\right )}{16 x^6+8 x^4 \log (3)+x^2 \log ^2(3)} \, dx\\ &=e^{\frac {5}{3-e^2}} \int \frac {-48 x^2-4 \log (3)+e^{\frac {5}{-3+e^2}} \left (-16 x^6-8 x^4 \log (3)-x^2 \log ^2(3)\right )}{x^2 \left (16 x^4+8 x^2 \log (3)+\log ^2(3)\right )} \, dx\\ &=\left (16 e^{\frac {5}{3-e^2}}\right ) \int \frac {-48 x^2-4 \log (3)+e^{\frac {5}{-3+e^2}} \left (-16 x^6-8 x^4 \log (3)-x^2 \log ^2(3)\right )}{x^2 \left (16 x^2+4 \log (3)\right )^2} \, dx\\ &=-\frac {64 e^{\frac {5}{3-e^2}} x}{\log (3) \left (16 x^2+\log (81)\right )}-\frac {\left (2 e^{\frac {5}{3-e^2}}\right ) \int \frac {8 \log (3)+8 e^{-\frac {5}{3-e^2}} x^4 \log (3)+2 x^2 \left (16+e^{-\frac {5}{3-e^2}} \log ^2(3)\right )}{x^2 \left (16 x^2+4 \log (3)\right )} \, dx}{\log (3)}\\ &=-\frac {64 e^{\frac {5}{3-e^2}} x}{\log (3) \left (16 x^2+\log (81)\right )}-\frac {\left (2 e^{\frac {5}{3-e^2}}\right ) \int \frac {2+\frac {1}{2} e^{-\frac {5}{3-e^2}} x^2 \log (3)}{x^2} \, dx}{\log (3)}\\ &=-\frac {64 e^{\frac {5}{3-e^2}} x}{\log (3) \left (16 x^2+\log (81)\right )}-\frac {\left (2 e^{\frac {5}{3-e^2}}\right ) \int \left (\frac {2}{x^2}+\frac {1}{2} e^{\frac {5}{-3+e^2}} \log (3)\right ) \, dx}{\log (3)}\\ &=-x+\frac {4 e^{\frac {5}{3-e^2}}}{x \log (3)}-\frac {64 e^{\frac {5}{3-e^2}} x}{\log (3) \left (16 x^2+\log (81)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 41, normalized size = 1.24 \begin {gather*} e^{-\frac {5}{-3+e^2}} \left (-e^{\frac {5}{-3+e^2}} x+\frac {4}{4 x^3+x \log (3)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 47, normalized size = 1.42 \begin {gather*} -\frac {{\left ({\left (4 \, x^{4} + x^{2} \log \relax (3)\right )} e^{\left (\frac {5}{e^{2} - 3}\right )} - 4\right )} e^{\left (-\frac {5}{e^{2} - 3}\right )}}{4 \, x^{3} + x \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 37, normalized size = 1.12 \begin {gather*} -{\left (x e^{\left (\frac {5}{e^{2} - 3}\right )} - \frac {4}{4 \, x^{3} + x \log \relax (3)}\right )} e^{\left (-\frac {5}{e^{2} - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 29, normalized size = 0.88
method | result | size |
risch | \(-x +\frac {4 \,{\mathrm e}^{-\frac {5}{{\mathrm e}^{2}-3}}}{x \left (4 x^{2}+\ln \relax (3)\right )}\) | \(29\) |
default | \({\mathrm e}^{-\frac {5}{{\mathrm e}^{2}-3}} \left (-{\mathrm e}^{\frac {5}{{\mathrm e}^{2}-3}} x +\frac {4}{x \ln \relax (3)}-\frac {16 x}{\ln \relax (3) \left (4 x^{2}+\ln \relax (3)\right )}\right )\) | \(52\) |
gosper | \(-\frac {\left (4 \,{\mathrm e}^{\frac {5}{{\mathrm e}^{2}-3}} x^{4}-4+\ln \relax (3) {\mathrm e}^{\frac {5}{{\mathrm e}^{2}-3}} x^{2}\right ) {\mathrm e}^{-\frac {5}{{\mathrm e}^{2}-3}}}{x \left (4 x^{2}+\ln \relax (3)\right )}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 37, normalized size = 1.12 \begin {gather*} -{\left (x e^{\left (\frac {5}{e^{2} - 3}\right )} - \frac {4}{4 \, x^{3} + x \log \relax (3)}\right )} e^{\left (-\frac {5}{e^{2} - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.86, size = 28, normalized size = 0.85 \begin {gather*} \frac {4\,{\mathrm {e}}^{-\frac {5}{{\mathrm {e}}^2-3}}}{x\,\left (4\,x^2+\ln \relax (3)\right )}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 29, normalized size = 0.88 \begin {gather*} - x + \frac {4}{4 x^{3} e^{\frac {5}{-3 + e^{2}}} + x e^{\frac {5}{-3 + e^{2}}} \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________