Optimal. Leaf size=26 \[ \frac {\log (16)}{x \left (-1+2 \left (4+x-x^2\right )\right ) \log \left (x^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-28-8 x+8 x^2\right ) \log (16)+\left (-7-4 x+6 x^2\right ) \log (16) \log \left (x^4\right )}{\left (49 x^2+28 x^3-24 x^4-8 x^5+4 x^6\right ) \log ^2\left (x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (16) \left (-28-8 x+8 x^2+\left (-7-4 x+6 x^2\right ) \log \left (x^4\right )\right )}{x^2 \left (7+2 x-2 x^2\right )^2 \log ^2\left (x^4\right )} \, dx\\ &=\log (16) \int \frac {-28-8 x+8 x^2+\left (-7-4 x+6 x^2\right ) \log \left (x^4\right )}{x^2 \left (7+2 x-2 x^2\right )^2 \log ^2\left (x^4\right )} \, dx\\ &=\log (16) \int \left (\frac {4}{x^2 \left (-7-2 x+2 x^2\right ) \log ^2\left (x^4\right )}+\frac {-7-4 x+6 x^2}{x^2 \left (-7-2 x+2 x^2\right )^2 \log \left (x^4\right )}\right ) \, dx\\ &=\log (16) \int \frac {-7-4 x+6 x^2}{x^2 \left (-7-2 x+2 x^2\right )^2 \log \left (x^4\right )} \, dx+(4 \log (16)) \int \frac {1}{x^2 \left (-7-2 x+2 x^2\right ) \log ^2\left (x^4\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 25, normalized size = 0.96 \begin {gather*} -\frac {\log (16)}{x \left (-7-2 x+2 x^2\right ) \log \left (x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 26, normalized size = 1.00 \begin {gather*} -\frac {4 \, \log \relax (2)}{{\left (2 \, x^{3} - 2 \, x^{2} - 7 \, x\right )} \log \left (x^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 32, normalized size = 1.23 \begin {gather*} -\frac {4 \, \log \relax (2)}{2 \, x^{3} \log \left (x^{4}\right ) - 2 \, x^{2} \log \left (x^{4}\right ) - 7 \, x \log \left (x^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.00
method | result | size |
norman | \(-\frac {4 \ln \relax (2)}{x \left (2 x^{2}-2 x -7\right ) \ln \left (x^{4}\right )}\) | \(26\) |
risch | \(-\frac {4 \ln \relax (2)}{x \left (2 x^{2}-2 x -7\right ) \ln \left (x^{4}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 24, normalized size = 0.92 \begin {gather*} -\frac {\log \relax (2)}{{\left (2 \, x^{3} - 2 \, x^{2} - 7 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.00, size = 25, normalized size = 0.96 \begin {gather*} \frac {4\,\ln \relax (2)}{x\,\ln \left (x^4\right )\,\left (-2\,x^2+2\,x+7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 24, normalized size = 0.92 \begin {gather*} - \frac {4 \log {\relax (2 )}}{\left (2 x^{3} - 2 x^{2} - 7 x\right ) \log {\left (x^{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________