Optimal. Leaf size=25 \[ (e+x) \left (\frac {3 x}{2}+\frac {5 e^{2 x}+x}{x}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 48, normalized size of antiderivative = 1.92, number of steps used = 14, number of rules used = 8, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {12, 14, 2199, 2194, 2177, 2178, 76, 2295} \begin {gather*} \frac {3 x^2}{2}+\frac {1}{2} (4+3 e) x-x+5 e^{2 x}+\frac {5 e^{2 x+1}}{x}+x \log (x)+e \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 76
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {4 x^2+6 x^3+e \left (2 x+3 x^2\right )+e^{2 x} \left (20 x^2+e (-10+20 x)\right )+2 x^2 \log (x)}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {10 e^{2 x} \left (-e+2 e x+2 x^2\right )}{x^2}+\frac {2 e+4 \left (1+\frac {3 e}{4}\right ) x+6 x^2+2 x \log (x)}{x}\right ) \, dx\\ &=\frac {1}{2} \int \frac {2 e+4 \left (1+\frac {3 e}{4}\right ) x+6 x^2+2 x \log (x)}{x} \, dx+5 \int \frac {e^{2 x} \left (-e+2 e x+2 x^2\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {(e+2 x) (2+3 x)}{x}+2 \log (x)\right ) \, dx+5 \int \left (2 e^{2 x}-\frac {e^{1+2 x}}{x^2}+\frac {2 e^{1+2 x}}{x}\right ) \, dx\\ &=\frac {1}{2} \int \frac {(e+2 x) (2+3 x)}{x} \, dx-5 \int \frac {e^{1+2 x}}{x^2} \, dx+10 \int e^{2 x} \, dx+10 \int \frac {e^{1+2 x}}{x} \, dx+\int \log (x) \, dx\\ &=5 e^{2 x}+\frac {5 e^{1+2 x}}{x}-x+10 e \text {Ei}(2 x)+x \log (x)+\frac {1}{2} \int \left (4+3 e+\frac {2 e}{x}+6 x\right ) \, dx-10 \int \frac {e^{1+2 x}}{x} \, dx\\ &=5 e^{2 x}+\frac {5 e^{1+2 x}}{x}-x+\frac {1}{2} (4+3 e) x+\frac {3 x^2}{2}+e \log (x)+x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 42, normalized size = 1.68 \begin {gather*} 5 e^{2 x}+\frac {5 e^{1+2 x}}{x}+x+\frac {3 e x}{2}+\frac {3 x^2}{2}+e \log (x)+x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 45, normalized size = 1.80 \begin {gather*} \frac {3 \, x^{3} + 3 \, x^{2} e + 2 \, x^{2} + 10 \, {\left (x + e\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{2} + x e\right )} \log \relax (x)}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 52, normalized size = 2.08 \begin {gather*} \frac {3 \, x^{3} + 3 \, x^{2} e + 2 \, x^{2} \log \relax (x) + 2 \, x e \log \relax (x) + 2 \, x^{2} + 10 \, x e^{\left (2 \, x\right )} + 10 \, e^{\left (2 \, x + 1\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 51, normalized size = 2.04
method | result | size |
risch | \(x \ln \relax (x )+\frac {2 x \,{\mathrm e} \ln \relax (x )+3 x^{2} {\mathrm e}+10 \,{\mathrm e}^{2 x +1}+3 x^{3}+10 x \,{\mathrm e}^{2 x}+2 x^{2}}{2 x}\) | \(51\) |
default | \(\frac {3 x^{2}}{2}+\frac {3 x \,{\mathrm e}}{2}+x +{\mathrm e} \ln \relax (x )+5 \,{\mathrm e}^{2 x}-5 \,{\mathrm e} \left (-\frac {{\mathrm e}^{2 x}}{x}-2 \expIntegralEi \left (1, -2 x \right )\right )-10 \,{\mathrm e} \expIntegralEi \left (1, -2 x \right )+x \ln \relax (x )\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 44, normalized size = 1.76 \begin {gather*} \frac {3}{2} \, x^{2} + \frac {3}{2} \, x e + 10 \, {\rm Ei}\left (2 \, x\right ) e - 10 \, e \Gamma \left (-1, -2 \, x\right ) + x \log \relax (x) + e \log \relax (x) + x + 5 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 38, normalized size = 1.52 \begin {gather*} x+5\,{\mathrm {e}}^{2\,x}+\frac {3\,x\,\mathrm {e}}{2}+\mathrm {e}\,\ln \relax (x)+x\,\ln \relax (x)+\frac {5\,{\mathrm {e}}^{2\,x+1}}{x}+\frac {3\,x^2}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 42, normalized size = 1.68 \begin {gather*} \frac {3 x^{2}}{2} + x \log {\relax (x )} + \frac {x \left (2 + 3 e\right )}{2} + e \log {\relax (x )} + \frac {\left (5 x + 5 e\right ) e^{2 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________