Optimal. Leaf size=27 \[ \frac {4+\log (x)}{\left (e^x+\frac {x}{-2+e^x-2 x}\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 8.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 e^{3 x}+8 x+8 x^2+e^{2 x} (16+16 x)+e^x \left (-16-36 x-16 x^2\right )+\left (8 x-4 e^{3 x} x+e^{2 x} \left (16 x+16 x^2\right )+e^x \left (-20 x-28 x^2-16 x^3\right )\right ) \log (x)+\left (2 x-e^{3 x} x+e^{2 x} \left (4 x+4 x^2\right )+e^x \left (-5 x-7 x^2-4 x^3\right )\right ) \log ^2(x)}{\left (e^{4 x} x+x^3+e^{3 x} \left (-4 x-4 x^2\right )+e^x \left (-4 x^2-4 x^3\right )+e^{2 x} \left (4 x+10 x^2+4 x^3\right )\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 \left (e^{3 x}-4 e^{2 x} (1+x)-2 x (1+x)+e^x \left (4+9 x+4 x^2\right )\right )-4 x \left (-2+e^{3 x}-4 e^{2 x} (1+x)+e^x \left (5+7 x+4 x^2\right )\right ) \log (x)-x \left (-2+e^{3 x}-4 e^{2 x} (1+x)+e^x \left (5+7 x+4 x^2\right )\right ) \log ^2(x)}{x \left (e^{2 x}+x-2 e^x (1+x)\right )^2 \log ^2(x)} \, dx\\ &=\int \left (\frac {\left (2-e^x-2 x+2 e^x x-2 x^2\right ) (4+\log (x))}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)}-\frac {\left (2-e^x+2 x\right ) \left (4+4 x \log (x)+x \log ^2(x)\right )}{x \left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log ^2(x)}\right ) \, dx\\ &=\int \frac {\left (2-e^x-2 x+2 e^x x-2 x^2\right ) (4+\log (x))}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx-\int \frac {\left (2-e^x+2 x\right ) \left (4+4 x \log (x)+x \log ^2(x)\right )}{x \left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log ^2(x)} \, dx\\ &=\int \left (\frac {2}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2}-\frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2}+\frac {2 e^x x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2}-\frac {2 x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2}-\frac {2 x^2}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2}+\frac {8}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)}-\frac {4 e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)}+\frac {8 e^x x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)}-\frac {8 x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2 \log (x)}-\frac {8 x^2}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2 \log (x)}\right ) \, dx-\int \left (-\frac {2}{-2 e^x+e^{2 x}+x-2 e^x x}+\frac {e^x}{-2 e^x+e^{2 x}+x-2 e^x x}+\frac {2 x}{2 e^x-e^{2 x}-x+2 e^x x}-\frac {8}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log ^2(x)}+\frac {4 e^x}{x \left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log ^2(x)}+\frac {8}{x \left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log ^2(x)}-\frac {8}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log (x)}+\frac {4 e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log (x)}+\frac {8 x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log (x)}\right ) \, dx\\ &=2 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2} \, dx+2 \int \frac {e^x x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2} \, dx+2 \int \frac {1}{-2 e^x+e^{2 x}+x-2 e^x x} \, dx-2 \int \frac {x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2} \, dx-2 \int \frac {x^2}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2} \, dx-2 \int \frac {x}{2 e^x-e^{2 x}-x+2 e^x x} \, dx-4 \int \frac {e^x}{x \left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log ^2(x)} \, dx-4 \int \frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx-4 \int \frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log (x)} \, dx+8 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log ^2(x)} \, dx-8 \int \frac {1}{x \left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log ^2(x)} \, dx+8 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx+8 \int \frac {e^x x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx+8 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log (x)} \, dx-8 \int \frac {x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2 \log (x)} \, dx-8 \int \frac {x^2}{\left (2 e^x-e^{2 x}-x+2 e^x x\right )^2 \log (x)} \, dx-8 \int \frac {x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log (x)} \, dx-\int \frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2} \, dx-\int \frac {e^x}{-2 e^x+e^{2 x}+x-2 e^x x} \, dx\\ &=2 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2} \, dx+2 \int \frac {e^x x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2} \, dx+2 \int \frac {1}{-2 e^x+e^{2 x}+x-2 e^x x} \, dx-2 \int \frac {x}{2 e^x-e^{2 x}-x+2 e^x x} \, dx-2 \int \frac {x}{\left (e^{2 x}+x-2 e^x (1+x)\right )^2} \, dx-2 \int \frac {x^2}{\left (e^{2 x}+x-2 e^x (1+x)\right )^2} \, dx-4 \int \frac {e^x}{x \left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log ^2(x)} \, dx-4 \int \frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx-4 \int \frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log (x)} \, dx+8 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log ^2(x)} \, dx-8 \int \frac {1}{x \left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log ^2(x)} \, dx+8 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx+8 \int \frac {e^x x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2 \log (x)} \, dx+8 \int \frac {1}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right ) \log (x)} \, dx-8 \int \frac {x}{\left (2 e^x-e^{2 x}-x+2 e^x x\right ) \log (x)} \, dx-8 \int \frac {x}{\left (e^{2 x}+x-2 e^x (1+x)\right )^2 \log (x)} \, dx-8 \int \frac {x^2}{\left (e^{2 x}+x-2 e^x (1+x)\right )^2 \log (x)} \, dx-\int \frac {e^x}{\left (-2 e^x+e^{2 x}+x-2 e^x x\right )^2} \, dx-\int \frac {e^x}{-2 e^x+e^{2 x}+x-2 e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 35, normalized size = 1.30 \begin {gather*} \frac {\left (e^x-2 (1+x)\right ) (4+\log (x))}{\left (e^{2 x}+x-2 e^x (1+x)\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 45, normalized size = 1.67 \begin {gather*} \frac {{\left (2 \, x - e^{x} + 2\right )} \log \relax (x) + 8 \, x - 4 \, e^{x} + 8}{{\left (2 \, {\left (x + 1\right )} e^{x} - x - e^{\left (2 \, x\right )}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.44, size = 209, normalized size = 7.74 \begin {gather*} \frac {2 \, {\left (8 \, x^{4} \log \relax (x)^{2} - 4 \, x^{3} e^{x} \log \relax (x)^{2} + 16 \, x^{4} \log \relax (x) - 8 \, x^{3} e^{x} \log \relax (x) + 8 \, x^{3} \log \relax (x)^{2} + 16 \, x^{3} \log \relax (x) - 16 \, x^{3} + 8 \, x^{2} e^{x} - 16 \, x^{2} \log \relax (x) + 8 \, x e^{x} \log \relax (x) - 2 \, x \log \relax (x)^{2} + e^{x} \log \relax (x)^{2} - 24 \, x^{2} + 8 \, x e^{x} - 12 \, x \log \relax (x) + 2 \, e^{x} \log \relax (x) - 2 \, \log \relax (x)^{2} - 12 \, x - 8 \, \log \relax (x) - 4\right )}}{8 \, x^{4} e^{x} \log \relax (x)^{2} - 4 \, x^{4} \log \relax (x)^{2} - 4 \, x^{3} e^{\left (2 \, x\right )} \log \relax (x)^{2} + 8 \, x^{3} e^{x} \log \relax (x)^{2} - 2 \, x e^{x} \log \relax (x)^{2} + x \log \relax (x)^{2} + e^{\left (2 \, x\right )} \log \relax (x)^{2} - 2 \, e^{x} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 69, normalized size = 2.56
method | result | size |
risch | \(\frac {-{\mathrm e}^{x}+2 x +2}{2 \,{\mathrm e}^{x} x -{\mathrm e}^{2 x}-x +2 \,{\mathrm e}^{x}}+\frac {-4 \,{\mathrm e}^{x}+8 x +8}{\left (2 \,{\mathrm e}^{x} x -{\mathrm e}^{2 x}-x +2 \,{\mathrm e}^{x}\right ) \ln \relax (x )}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 46, normalized size = 1.70 \begin {gather*} -\frac {{\left (\log \relax (x) + 4\right )} e^{x} - 2 \, {\left (x + 1\right )} \log \relax (x) - 8 \, x - 8}{2 \, {\left (x + 1\right )} e^{x} \log \relax (x) - x \log \relax (x) - e^{\left (2 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {8\,x-4\,{\mathrm {e}}^{3\,x}+\ln \relax (x)\,\left (8\,x+{\mathrm {e}}^{2\,x}\,\left (16\,x^2+16\,x\right )-4\,x\,{\mathrm {e}}^{3\,x}-{\mathrm {e}}^x\,\left (16\,x^3+28\,x^2+20\,x\right )\right )-{\mathrm {e}}^x\,\left (16\,x^2+36\,x+16\right )+{\mathrm {e}}^{2\,x}\,\left (16\,x+16\right )+8\,x^2+{\ln \relax (x)}^2\,\left (2\,x+{\mathrm {e}}^{2\,x}\,\left (4\,x^2+4\,x\right )-x\,{\mathrm {e}}^{3\,x}-{\mathrm {e}}^x\,\left (4\,x^3+7\,x^2+5\,x\right )\right )}{{\ln \relax (x)}^2\,\left (x\,{\mathrm {e}}^{4\,x}-{\mathrm {e}}^x\,\left (4\,x^3+4\,x^2\right )-{\mathrm {e}}^{3\,x}\,\left (4\,x^2+4\,x\right )+{\mathrm {e}}^{2\,x}\,\left (4\,x^3+10\,x^2+4\,x\right )+x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 54, normalized size = 2.00 \begin {gather*} \frac {- 2 x \log {\relax (x )} - 8 x + \left (\log {\relax (x )} + 4\right ) e^{x} - 2 \log {\relax (x )} - 8}{x \log {\relax (x )} + \left (- 2 x \log {\relax (x )} - 2 \log {\relax (x )}\right ) e^{x} + e^{2 x} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________