Optimal. Leaf size=22 \[ \frac {x}{e^4+4 e^6-x-\log (5)+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+e^4+4 e^6-\log (5)+\log (x)}{e^8+16 e^{12}+e^4 \left (8 e^6-2 x\right )-8 e^6 x+x^2+\left (-2 e^4-8 e^6+2 x\right ) \log (5)+\log ^2(5)+\left (2 e^4+8 e^6-2 x-2 \log (5)\right ) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+e^4 \left (1+4 e^2\right )+\log \left (\frac {x}{5}\right )}{\left (e^4 \left (1+4 e^2\right )-x+\log \left (\frac {x}{5}\right )\right )^2} \, dx\\ &=5 \operatorname {Subst}\left (\int \frac {-1+e^4 \left (1+4 e^2\right )+\log (x)}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2} \, dx,x,\frac {x}{5}\right )\\ &=5 \operatorname {Subst}\left (\int \left (\frac {-1+5 x}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2}+\frac {1}{e^4 \left (1+4 e^2\right )-5 x+\log (x)}\right ) \, dx,x,\frac {x}{5}\right )\\ &=5 \operatorname {Subst}\left (\int \frac {-1+5 x}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2} \, dx,x,\frac {x}{5}\right )+5 \operatorname {Subst}\left (\int \frac {1}{e^4 \left (1+4 e^2\right )-5 x+\log (x)} \, dx,x,\frac {x}{5}\right )\\ &=5 \operatorname {Subst}\left (\int \frac {1}{e^4 \left (1+4 e^2\right )-5 x+\log (x)} \, dx,x,\frac {x}{5}\right )+5 \operatorname {Subst}\left (\int \left (-\frac {1}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2}+\frac {5 x}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2}\right ) \, dx,x,\frac {x}{5}\right )\\ &=-\left (5 \operatorname {Subst}\left (\int \frac {1}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2} \, dx,x,\frac {x}{5}\right )\right )+5 \operatorname {Subst}\left (\int \frac {1}{e^4 \left (1+4 e^2\right )-5 x+\log (x)} \, dx,x,\frac {x}{5}\right )+25 \operatorname {Subst}\left (\int \frac {x}{\left (e^4 \left (1+4 e^2\right )-5 x+\log (x)\right )^2} \, dx,x,\frac {x}{5}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 22, normalized size = 1.00 \begin {gather*} \frac {x}{e^4+4 e^6-x+\log \left (\frac {x}{5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 21, normalized size = 0.95 \begin {gather*} -\frac {x}{x - 4 \, e^{6} - e^{4} + \log \relax (5) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 21, normalized size = 0.95 \begin {gather*} -\frac {x}{x - 4 \, e^{6} - e^{4} + \log \relax (5) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 21, normalized size = 0.95
method | result | size |
risch | \(\frac {x}{4 \,{\mathrm e}^{6}+{\mathrm e}^{4}-\ln \relax (5)-x +\ln \relax (x )}\) | \(21\) |
norman | \(\frac {\ln \relax (x )+4 \,{\mathrm e}^{6}-\ln \relax (5)+{\mathrm e}^{4}}{4 \,{\mathrm e}^{6}+{\mathrm e}^{4}-\ln \relax (5)-x +\ln \relax (x )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 21, normalized size = 0.95 \begin {gather*} -\frac {x}{x - 4 \, e^{6} - e^{4} + \log \relax (5) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 18, normalized size = 0.82 \begin {gather*} \frac {x}{\ln \left (\frac {x}{5}\right )-x+{\mathrm {e}}^4+4\,{\mathrm {e}}^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.77 \begin {gather*} \frac {x}{- x + \log {\relax (x )} - \log {\relax (5 )} + e^{4} + 4 e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________