Optimal. Leaf size=25 \[ e^2+e^{\frac {2 x-e^{-2 x} x^4}{x^2}}+x \]
________________________________________________________________________________________
Rubi [F] time = 1.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 x} \left (e^{2 x} x^2+e^{\frac {e^{-2 x} \left (2 e^{2 x}-x^3\right )}{x}} \left (-2 e^{2 x}-2 x^3+2 x^4\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {2 e^{\frac {2}{x}-2 x-e^{-2 x} x^2} \left (e^{2 x}+x^3-x^4\right )}{x^2}\right ) \, dx\\ &=x-2 \int \frac {e^{\frac {2}{x}-2 x-e^{-2 x} x^2} \left (e^{2 x}+x^3-x^4\right )}{x^2} \, dx\\ &=x-2 \int \left (\frac {e^{\frac {2}{x}-e^{-2 x} x^2}}{x^2}-e^{\frac {2}{x}-2 x-e^{-2 x} x^2} (-1+x) x\right ) \, dx\\ &=x-2 \int \frac {e^{\frac {2}{x}-e^{-2 x} x^2}}{x^2} \, dx+2 \int e^{\frac {2}{x}-2 x-e^{-2 x} x^2} (-1+x) x \, dx\\ &=x-2 \int \frac {e^{\frac {2}{x}-e^{-2 x} x^2}}{x^2} \, dx+2 \int \left (-e^{\frac {2}{x}-2 x-e^{-2 x} x^2} x+e^{\frac {2}{x}-2 x-e^{-2 x} x^2} x^2\right ) \, dx\\ &=x-2 \int \frac {e^{\frac {2}{x}-e^{-2 x} x^2}}{x^2} \, dx-2 \int e^{\frac {2}{x}-2 x-e^{-2 x} x^2} x \, dx+2 \int e^{\frac {2}{x}-2 x-e^{-2 x} x^2} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 20, normalized size = 0.80 \begin {gather*} e^{\frac {2}{x}-e^{-2 x} x^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 22, normalized size = 0.88 \begin {gather*} x + e^{\left (-\frac {{\left (x^{3} - 2 \, e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 18, normalized size = 0.72 \begin {gather*} x + e^{\left (-x^{2} e^{\left (-2 \, x\right )} + \frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 0.92
method | result | size |
risch | \(x +{\mathrm e}^{-\frac {\left (-2 \,{\mathrm e}^{2 x}+x^{3}\right ) {\mathrm e}^{-2 x}}{x}}\) | \(23\) |
norman | \(\frac {\left ({\mathrm e}^{2 x} x^{2}+x \,{\mathrm e}^{2 x} {\mathrm e}^{\frac {\left (2 \,{\mathrm e}^{2 x}-x^{3}\right ) {\mathrm e}^{-2 x}}{x}}\right ) {\mathrm e}^{-2 x}}{x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 18, normalized size = 0.72 \begin {gather*} x + e^{\left (-x^{2} e^{\left (-2 \, x\right )} + \frac {2}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.54, size = 19, normalized size = 0.76 \begin {gather*} x+{\mathrm {e}}^{2/x}\,{\mathrm {e}}^{-x^2\,{\mathrm {e}}^{-2\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 19, normalized size = 0.76 \begin {gather*} x + e^{\frac {\left (- x^{3} + 2 e^{2 x}\right ) e^{- 2 x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________