Optimal. Leaf size=33 \[ e^3+\frac {14+x}{(4-x) x}+\frac {3+x \left (1-5 x^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 24, normalized size of antiderivative = 0.73, number of steps used = 4, number of rules used = 3, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {1594, 27, 1620} \begin {gather*} -5 x^2+\frac {9}{2 (4-x)}+\frac {13}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 1620
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-104+52 x-2 x^2-160 x^3+80 x^4-10 x^5}{x^2 \left (16-8 x+x^2\right )} \, dx\\ &=\int \frac {-104+52 x-2 x^2-160 x^3+80 x^4-10 x^5}{(-4+x)^2 x^2} \, dx\\ &=\int \left (\frac {9}{2 (-4+x)^2}-\frac {13}{2 x^2}-10 x\right ) \, dx\\ &=\frac {9}{2 (4-x)}+\frac {13}{2 x}-5 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 26, normalized size = 0.79 \begin {gather*} -2 \left (\frac {9}{4 (-4+x)}-\frac {13}{4 x}+\frac {5 x^2}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 26, normalized size = 0.79 \begin {gather*} -\frac {5 \, x^{4} - 20 \, x^{3} - 2 \, x + 26}{x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 20, normalized size = 0.61 \begin {gather*} -5 \, x^{2} + \frac {2 \, {\left (x - 13\right )}}{x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 0.58
method | result | size |
default | \(-5 x^{2}+\frac {13}{2 x}-\frac {9}{2 \left (x -4\right )}\) | \(19\) |
risch | \(-5 x^{2}+\frac {2 x -26}{\left (x -4\right ) x}\) | \(21\) |
norman | \(\frac {-5 x^{4}+20 x^{3}+2 x -26}{\left (x -4\right ) x}\) | \(25\) |
gosper | \(-\frac {5 x^{4}-20 x^{3}-2 x +26}{x \left (x -4\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 20, normalized size = 0.61 \begin {gather*} -5 \, x^{2} + \frac {2 \, {\left (x - 13\right )}}{x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 20, normalized size = 0.61 \begin {gather*} \frac {2\,x-26}{x\,\left (x-4\right )}-5\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 17, normalized size = 0.52 \begin {gather*} - 5 x^{2} - \frac {26 - 2 x}{x^{2} - 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________