Optimal. Leaf size=25 \[ -5 x+7 (-2+\log (4))+\frac {1}{4} e^{-x} \left (4+\log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 6742, 2288} \begin {gather*} \frac {e^{-x} \left (x \log \left (x^2\right )+4 x\right )}{4 x}-5 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^{-x} \left (2-4 x-20 e^x x-x \log \left (x^2\right )\right )}{x} \, dx\\ &=\frac {1}{4} \int \left (-20+\frac {e^{-x} \left (2-4 x-x \log \left (x^2\right )\right )}{x}\right ) \, dx\\ &=-5 x+\frac {1}{4} \int \frac {e^{-x} \left (2-4 x-x \log \left (x^2\right )\right )}{x} \, dx\\ &=-5 x+\frac {e^{-x} \left (4 x+x \log \left (x^2\right )\right )}{4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{4} \left (4 e^{-x}-20 x+e^{-x} \log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 19, normalized size = 0.76 \begin {gather*} -\frac {1}{4} \, {\left (20 \, x e^{x} - \log \left (x^{2}\right ) - 4\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 18, normalized size = 0.72 \begin {gather*} \frac {1}{4} \, e^{\left (-x\right )} \log \left (x^{2}\right ) - 5 \, x + e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 17, normalized size = 0.68
method | result | size |
default | \(-5 x +\frac {\left (4+\ln \left (x^{2}\right )\right ) {\mathrm e}^{-x}}{4}\) | \(17\) |
norman | \(\left (1-5 \,{\mathrm e}^{x} x +\frac {\ln \left (x^{2}\right )}{4}\right ) {\mathrm e}^{-x}\) | \(19\) |
risch | \(\frac {\ln \relax (x ) {\mathrm e}^{-x}}{2}-\frac {\left (i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+40 \,{\mathrm e}^{x} x -8\right ) {\mathrm e}^{-x}}{8}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 18, normalized size = 0.72 \begin {gather*} \frac {1}{4} \, e^{\left (-x\right )} \log \left (x^{2}\right ) - 5 \, x + e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 18, normalized size = 0.72 \begin {gather*} {\mathrm {e}}^{-x}-5\,x+\frac {\ln \left (x^2\right )\,{\mathrm {e}}^{-x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 14, normalized size = 0.56 \begin {gather*} - 5 x + \frac {\left (\log {\left (x^{2} \right )} + 4\right ) e^{- x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________