Optimal. Leaf size=30 \[ \frac {3-\frac {3}{x}+x-\left (x+\frac {5 \log \left (\log ^2(4 x)\right )}{x}\right )^2}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20 x^2+\left (6 x-3 x^2-x^4\right ) \log (4 x)+\left (-100+10 x^2 \log (4 x)\right ) \log \left (\log ^2(4 x)\right )+75 \log (4 x) \log ^2\left (\log ^2(4 x)\right )}{x^4 \log (4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-20 x+6 \log (4 x)-3 x \log (4 x)-x^3 \log (4 x)}{x^3 \log (4 x)}+\frac {10 \left (-10+x^2 \log (4 x)\right ) \log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)}+\frac {75 \log ^2\left (\log ^2(4 x)\right )}{x^4}\right ) \, dx\\ &=10 \int \frac {\left (-10+x^2 \log (4 x)\right ) \log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)} \, dx+75 \int \frac {\log ^2\left (\log ^2(4 x)\right )}{x^4} \, dx+\int \frac {-20 x+6 \log (4 x)-3 x \log (4 x)-x^3 \log (4 x)}{x^3 \log (4 x)} \, dx\\ &=10 \int \left (\frac {\log \left (\log ^2(4 x)\right )}{x^2}-\frac {10 \log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)}\right ) \, dx+75 \int \frac {\log ^2\left (\log ^2(4 x)\right )}{x^4} \, dx+\int \left (-1+\frac {6}{x^3}-\frac {3}{x^2}-\frac {20}{x^2 \log (4 x)}\right ) \, dx\\ &=-\frac {3}{x^2}+\frac {3}{x}-x+10 \int \frac {\log \left (\log ^2(4 x)\right )}{x^2} \, dx-20 \int \frac {1}{x^2 \log (4 x)} \, dx+75 \int \frac {\log ^2\left (\log ^2(4 x)\right )}{x^4} \, dx-100 \int \frac {\log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)} \, dx\\ &=-\frac {3}{x^2}+\frac {3}{x}-x-\frac {10 \log \left (\log ^2(4 x)\right )}{x}+20 \int \frac {1}{x^2 \log (4 x)} \, dx+75 \int \frac {\log ^2\left (\log ^2(4 x)\right )}{x^4} \, dx-80 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (4 x)\right )-100 \int \frac {\log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)} \, dx\\ &=-\frac {3}{x^2}+\frac {3}{x}-x-80 \text {Ei}(-\log (4 x))-\frac {10 \log \left (\log ^2(4 x)\right )}{x}+75 \int \frac {\log ^2\left (\log ^2(4 x)\right )}{x^4} \, dx+80 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (4 x)\right )-100 \int \frac {\log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)} \, dx\\ &=-\frac {3}{x^2}+\frac {3}{x}-x-\frac {10 \log \left (\log ^2(4 x)\right )}{x}+75 \int \frac {\log ^2\left (\log ^2(4 x)\right )}{x^4} \, dx-100 \int \frac {\log \left (\log ^2(4 x)\right )}{x^4 \log (4 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 40, normalized size = 1.33 \begin {gather*} -\frac {3}{x^2}+\frac {3}{x}-x-\frac {10 \log \left (\log ^2(4 x)\right )}{x}-\frac {25 \log ^2\left (\log ^2(4 x)\right )}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 40, normalized size = 1.33 \begin {gather*} -\frac {x^{4} + 10 \, x^{2} \log \left (\log \left (4 \, x\right )^{2}\right ) - 3 \, x^{2} + 25 \, \log \left (\log \left (4 \, x\right )^{2}\right )^{2} + 3 \, x}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.59, size = 38, normalized size = 1.27 \begin {gather*} -x - \frac {10 \, \log \left (\log \left (4 \, x\right )^{2}\right )}{x} + \frac {3 \, {\left (x - 1\right )}}{x^{2}} - \frac {25 \, \log \left (\log \left (4 \, x\right )^{2}\right )^{2}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.58, size = 309, normalized size = 10.30
method | result | size |
risch | \(-\frac {100 \ln \left (\ln \left (4 x \right )\right )^{2}}{x^{3}}-\frac {10 \left (-5 i \pi \mathrm {csgn}\left (i \ln \left (4 x \right )\right )^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )+10 i \pi \,\mathrm {csgn}\left (i \ln \left (4 x \right )\right ) \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{2}-5 i \pi \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{3}+2 x^{2}\right ) \ln \left (\ln \left (4 x \right )\right )}{x^{3}}-\frac {-25 \pi ^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )\right )^{4} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{2}+100 \pi ^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )\right )^{3} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{3}-150 \pi ^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )\right )^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{4}+100 \pi ^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )\right ) \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{5}-25 \pi ^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{6}-20 i \pi \,x^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )\right )^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )+40 i \pi \,x^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )\right ) \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{2}-20 i \pi \,x^{2} \mathrm {csgn}\left (i \ln \left (4 x \right )^{2}\right )^{3}+4 x^{4}-12 x^{2}+12 x}{4 x^{3}}\) | \(309\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 41, normalized size = 1.37 \begin {gather*} -x - \frac {10 \, \log \left (\log \left (4 \, x\right )^{2}\right )}{x} + \frac {3}{x} - \frac {100 \, \log \left (2 \, \log \relax (2) + \log \relax (x)\right )^{2}}{x^{3}} - \frac {3}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 39, normalized size = 1.30 \begin {gather*} \frac {3\,x-3}{x^2}-\frac {10\,\ln \left ({\ln \left (4\,x\right )}^2\right )}{x}-x-\frac {25\,{\ln \left ({\ln \left (4\,x\right )}^2\right )}^2}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 37, normalized size = 1.23 \begin {gather*} - x - \frac {10 \log {\left (\log {\left (4 x \right )}^{2} \right )}}{x} - \frac {3 - 3 x}{x^{2}} - \frac {25 \log {\left (\log {\left (4 x \right )}^{2} \right )}^{2}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________