Optimal. Leaf size=26 \[ -x+\frac {4+e^x+\left (-1+e^5\right )^{e^{8 x}}}{4+x} \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 57, normalized size of antiderivative = 2.19, number of steps used = 9, number of rules used = 5, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {27, 6742, 43, 2197, 2288} \begin {gather*} -x+\frac {e^{-8 x} \left (e^5-1\right )^{e^{8 x}} \left (e^{8 x} x+4 e^{8 x}\right )}{(x+4)^2}+\frac {e^x}{x+4}+\frac {4}{x+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 2197
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20-8 x-x^2+e^x (3+x)+\left (-1+e^5\right )^{e^{8 x}} \left (-1+e^{8 x} (32+8 x) \log \left (-1+e^5\right )\right )}{(4+x)^2} \, dx\\ &=\int \left (-\frac {20}{(4+x)^2}-\frac {8 x}{(4+x)^2}-\frac {x^2}{(4+x)^2}+\frac {e^x (3+x)}{(4+x)^2}+\frac {\left (-1+e^5\right )^{e^{8 x}} \left (-1+32 e^{8 x} \log \left (-1+e^5\right )+8 e^{8 x} x \log \left (-1+e^5\right )\right )}{(4+x)^2}\right ) \, dx\\ &=\frac {20}{4+x}-8 \int \frac {x}{(4+x)^2} \, dx-\int \frac {x^2}{(4+x)^2} \, dx+\int \frac {e^x (3+x)}{(4+x)^2} \, dx+\int \frac {\left (-1+e^5\right )^{e^{8 x}} \left (-1+32 e^{8 x} \log \left (-1+e^5\right )+8 e^{8 x} x \log \left (-1+e^5\right )\right )}{(4+x)^2} \, dx\\ &=\frac {20}{4+x}+\frac {e^x}{4+x}+\frac {e^{-8 x} \left (-1+e^5\right )^{e^{8 x}} \left (4 e^{8 x}+e^{8 x} x\right )}{(4+x)^2}-8 \int \left (-\frac {4}{(4+x)^2}+\frac {1}{4+x}\right ) \, dx-\int \left (1+\frac {16}{(4+x)^2}-\frac {8}{4+x}\right ) \, dx\\ &=-x+\frac {4}{4+x}+\frac {e^x}{4+x}+\frac {e^{-8 x} \left (-1+e^5\right )^{e^{8 x}} \left (4 e^{8 x}+e^{8 x} x\right )}{(4+x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 30, normalized size = 1.15 \begin {gather*} \frac {4+e^x+\left (-1+e^5\right )^{e^{8 x}}-4 x-x^2}{4+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 30, normalized size = 1.15 \begin {gather*} -\frac {x^{2} + 4 \, x - {\left (e^{5} - 1\right )}^{e^{\left (8 \, x\right )}} - e^{x} - 4}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {x^{2} - {\left (8 \, {\left (x + 4\right )} e^{\left (8 \, x\right )} \log \left (e^{5} - 1\right ) - 1\right )} {\left (e^{5} - 1\right )}^{e^{\left (8 \, x\right )}} - {\left (x + 3\right )} e^{x} + 8 \, x + 20}{x^{2} + 8 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 35, normalized size = 1.35
method | result | size |
risch | \(-x +\frac {4}{4+x}+\frac {{\mathrm e}^{x}}{4+x}+\frac {\left ({\mathrm e}^{5}-1\right )^{{\mathrm e}^{8 x}}}{4+x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 57, normalized size = 2.19 \begin {gather*} -\frac {x^{2} + 4 \, x - e^{\left (e^{\left (8 \, x\right )} \log \left (e^{4} + e^{3} + e^{2} + e + 1\right ) + e^{\left (8 \, x\right )} \log \left (e - 1\right )\right )} - e^{x} + 16}{x + 4} + \frac {20}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.71, size = 34, normalized size = 1.31 \begin {gather*} \frac {4}{x+4}-x+\frac {{\mathrm {e}}^x}{x+4}+\frac {{\left ({\mathrm {e}}^5-1\right )}^{{\mathrm {e}}^{8\,x}}}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 29, normalized size = 1.12 \begin {gather*} - x + \frac {e^{x}}{x + 4} + \frac {e^{e^{8 x} \log {\left (-1 + e^{5} \right )}}}{x + 4} + \frac {4}{x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________