Optimal. Leaf size=31 \[ e^{e^{2 x^4} \left (2-\frac {1}{x}+2 x\right )^2 (-\log (2)+\log (x))^2} \]
________________________________________________________________________________________
Rubi [F] time = 138.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{2 x^4} \left (1-4 x+8 x^3+4 x^4\right ) \log ^2(2)+e^{2 x^4} \left (-2+8 x-16 x^3-8 x^4\right ) \log (2) \log (x)+e^{2 x^4} \left (1-4 x+8 x^3+4 x^4\right ) \log ^2(x)}{x^2}\right ) \left (e^{2 x^4} \left (\left (-2+8 x-16 x^3-8 x^4\right ) \log (2)+\left (-2+4 x+8 x^3+16 x^4-32 x^5+64 x^7+32 x^8\right ) \log ^2(2)\right )+e^{2 x^4} \left (2-8 x+16 x^3+8 x^4+\left (4-8 x-16 x^3-32 x^4+64 x^5-128 x^7-64 x^8\right ) \log (2)\right ) \log (x)+e^{2 x^4} \left (-2+4 x+8 x^3+16 x^4-32 x^5+64 x^7+32 x^8\right ) \log ^2(x)\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (1-2 x-2 x^2\right ) \left (-\log (2) \left (1-2 x+\log (2)-4 x^4 \log (2)+8 x^5 \log (2)+8 x^6 \log (2)+x^2 (-2+\log (4))\right )+\left (1-2 x-8 x^4 \log (2)+16 x^5 \log (2)+16 x^6 \log (2)+\log (4)+x^2 (-2+\log (16))\right ) \log (x)-\left (1+2 x^2-4 x^4+8 x^5+8 x^6\right ) \log ^2(x)\right )}{x^3} \, dx\\ &=2 \int \frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (1-2 x-2 x^2\right ) \left (-\log (2) \left (1-2 x+\log (2)-4 x^4 \log (2)+8 x^5 \log (2)+8 x^6 \log (2)+x^2 (-2+\log (4))\right )+\left (1-2 x-8 x^4 \log (2)+16 x^5 \log (2)+16 x^6 \log (2)+\log (4)+x^2 (-2+\log (16))\right ) \log (x)-\left (1+2 x^2-4 x^4+8 x^5+8 x^6\right ) \log ^2(x)\right )}{x^3} \, dx\\ &=2 \int \left (\frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (1-2 x-2 x^2\right ) \log (2) \left (-1+2 x+2 x^2 (1-\log (2))-\log (2)+4 x^4 \log (2)-8 x^5 \log (2)-8 x^6 \log (2)\right )}{x^3}+\frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (1-2 x-2 x^2\right ) \left (1-2 x-8 x^4 \log (2)+16 x^5 \log (2)+16 x^6 \log (2)-2 x^2 (1-\log (4))+\log (4)\right ) \log (x)}{x^3}+\frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (-1+2 x+2 x^2\right ) \left (1+2 x^2-4 x^4+8 x^5+8 x^6\right ) \log ^2(x)}{x^3}\right ) \, dx\\ &=2 \int \frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (1-2 x-2 x^2\right ) \left (1-2 x-8 x^4 \log (2)+16 x^5 \log (2)+16 x^6 \log (2)-2 x^2 (1-\log (4))+\log (4)\right ) \log (x)}{x^3} \, dx+2 \int \frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (-1+2 x+2 x^2\right ) \left (1+2 x^2-4 x^4+8 x^5+8 x^6\right ) \log ^2(x)}{x^3} \, dx+(2 \log (2)) \int \frac {\exp \left (2 x^4+\frac {e^{2 x^4} \left (-1+2 x+2 x^2\right )^2 \log ^2\left (\frac {x}{2}\right )}{x^2}\right ) \left (1-2 x-2 x^2\right ) \left (-1+2 x+2 x^2 (1-\log (2))-\log (2)+4 x^4 \log (2)-8 x^5 \log (2)-8 x^6 \log (2)\right )}{x^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 8.52, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {e^{2 x^4} \left (1-4 x+8 x^3+4 x^4\right ) \log ^2(2)+e^{2 x^4} \left (-2+8 x-16 x^3-8 x^4\right ) \log (2) \log (x)+e^{2 x^4} \left (1-4 x+8 x^3+4 x^4\right ) \log ^2(x)}{x^2}} \left (e^{2 x^4} \left (\left (-2+8 x-16 x^3-8 x^4\right ) \log (2)+\left (-2+4 x+8 x^3+16 x^4-32 x^5+64 x^7+32 x^8\right ) \log ^2(2)\right )+e^{2 x^4} \left (2-8 x+16 x^3+8 x^4+\left (4-8 x-16 x^3-32 x^4+64 x^5-128 x^7-64 x^8\right ) \log (2)\right ) \log (x)+e^{2 x^4} \left (-2+4 x+8 x^3+16 x^4-32 x^5+64 x^7+32 x^8\right ) \log ^2(x)\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 85, normalized size = 2.74 \begin {gather*} e^{\left (\frac {{\left (4 \, x^{4} + 8 \, x^{3} - 4 \, x + 1\right )} e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2} - 2 \, {\left (4 \, x^{4} + 8 \, x^{3} - 4 \, x + 1\right )} e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x) + {\left (4 \, x^{4} + 8 \, x^{3} - 4 \, x + 1\right )} e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.75, size = 174, normalized size = 5.61 \begin {gather*} e^{\left (4 \, x^{2} e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2} - 8 \, x^{2} e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x) + 4 \, x^{2} e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2} + 8 \, x e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2} - 16 \, x e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x) + 8 \, x e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2} - \frac {4 \, e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2}}{x} + \frac {8 \, e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x)}{x} - \frac {4 \, e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2}}{x} + \frac {e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2}}{x^{2}} - \frac {2 \, e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x)}{x^{2}} + \frac {e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 33, normalized size = 1.06
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{2 x^{4}} \left (2 x^{2}+2 x -1\right )^{2} \left (-\ln \relax (x )+\ln \relax (2)\right )^{2}}{x^{2}}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.00, size = 174, normalized size = 5.61 \begin {gather*} e^{\left (4 \, x^{2} e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2} - 8 \, x^{2} e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x) + 4 \, x^{2} e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2} + 8 \, x e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2} - 16 \, x e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x) + 8 \, x e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2} - \frac {4 \, e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2}}{x} + \frac {8 \, e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x)}{x} - \frac {4 \, e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2}}{x} + \frac {e^{\left (2 \, x^{4}\right )} \log \relax (2)^{2}}{x^{2}} - \frac {2 \, e^{\left (2 \, x^{4}\right )} \log \relax (2) \log \relax (x)}{x^{2}} + \frac {e^{\left (2 \, x^{4}\right )} \log \relax (x)^{2}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.33, size = 155, normalized size = 5.00 \begin {gather*} \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x^4}\,{\ln \relax (2)}^2}{x^2}}\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{2\,x^4}\,{\ln \relax (2)}^2}{x}}\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{2\,x^4}\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{8\,x\,{\mathrm {e}}^{2\,x^4}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x^4}\,{\ln \relax (x)}^2}{x^2}}\,{\mathrm {e}}^{-\frac {4\,{\mathrm {e}}^{2\,x^4}\,{\ln \relax (x)}^2}{x}}\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{2\,x^4}\,{\ln \relax (x)}^2}\,{\mathrm {e}}^{8\,x\,{\mathrm {e}}^{2\,x^4}\,{\ln \relax (2)}^2}}{x^{\frac {2\,{\mathrm {e}}^{2\,x^4}\,\ln \relax (2)\,\left (4\,x^4+8\,x^3-4\,x+1\right )}{x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.14, size = 87, normalized size = 2.81 \begin {gather*} e^{\frac {\left (- 8 x^{4} - 16 x^{3} + 8 x - 2\right ) e^{2 x^{4}} \log {\relax (2 )} \log {\relax (x )} + \left (4 x^{4} + 8 x^{3} - 4 x + 1\right ) e^{2 x^{4}} \log {\relax (x )}^{2} + \left (4 x^{4} + 8 x^{3} - 4 x + 1\right ) e^{2 x^{4}} \log {\relax (2 )}^{2}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________