Optimal. Leaf size=25 \[ \frac {1}{4} \left (-e^x-2 x\right )+x+x^2+e^3 (4+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {12, 2194} \begin {gather*} x^2+\frac {1}{2} \left (1+2 e^3\right ) x-\frac {e^x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (2+4 e^3-e^x+8 x\right ) \, dx\\ &=\frac {1}{2} \left (1+2 e^3\right ) x+x^2-\frac {\int e^x \, dx}{4}\\ &=-\frac {e^x}{4}+\frac {1}{2} \left (1+2 e^3\right ) x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.84 \begin {gather*} -\frac {e^x}{4}+\frac {x}{2}+e^3 x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x e^{3} + \frac {1}{2} \, x - \frac {1}{4} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x e^{3} + \frac {1}{2} \, x - \frac {1}{4} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.60
method | result | size |
norman | \(x^{2}+\left ({\mathrm e}^{3}+\frac {1}{2}\right ) x -\frac {{\mathrm e}^{x}}{4}\) | \(15\) |
default | \(x^{2}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{4}+x \,{\mathrm e}^{3}\) | \(16\) |
risch | \(x^{2}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{4}+x \,{\mathrm e}^{3}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x e^{3} + \frac {1}{2} \, x - \frac {1}{4} \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 14, normalized size = 0.56 \begin {gather*} x\,\left ({\mathrm {e}}^3+\frac {1}{2}\right )-\frac {{\mathrm {e}}^x}{4}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 15, normalized size = 0.60 \begin {gather*} x^{2} + x \left (\frac {1}{2} + e^{3}\right ) - \frac {e^{x}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________