Optimal. Leaf size=28 \[ \frac {4+\frac {e^{2 x}}{2}}{4 \left (3+e^{\frac {1}{3+e^2}}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 0.79, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {12, 2194} \begin {gather*} \frac {e^{2 x}}{8 \left (3+e^{\frac {1}{3+e^2}}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{2 x} \, dx}{4 \left (3+e^{\frac {1}{3+e^2}}\right )}\\ &=\frac {e^{2 x}}{8 \left (3+e^{\frac {1}{3+e^2}}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 24, normalized size = 0.86 \begin {gather*} \frac {e^{2 x}}{2 \left (12+4 e^{\frac {1}{3+e^2}}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 17, normalized size = 0.61 \begin {gather*} \frac {e^{\left (2 \, x\right )}}{8 \, {\left (e^{\left (\frac {1}{e^{2} + 3}\right )} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.01, size = 17, normalized size = 0.61 \begin {gather*} \frac {e^{\left (2 \, x\right )}}{8 \, {\left (e^{\left (\frac {1}{e^{2} + 3}\right )} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.64
method | result | size |
gosper | \(\frac {{\mathrm e}^{2 x}}{8 \,{\mathrm e}^{\frac {1}{{\mathrm e}^{2}+3}}+24}\) | \(18\) |
default | \(\frac {{\mathrm e}^{2 x}}{8 \,{\mathrm e}^{\frac {1}{{\mathrm e}^{2}+3}}+24}\) | \(18\) |
norman | \(\frac {{\mathrm e}^{2 x}}{8 \,{\mathrm e}^{\frac {1}{{\mathrm e}^{2}+3}}+24}\) | \(18\) |
derivativedivides | \(\frac {{\mathrm e}^{2 x}}{8 \,{\mathrm e}^{\frac {1}{{\mathrm e}^{2}+3}}+24}\) | \(20\) |
risch | \(\frac {{\mathrm e}^{2 x}}{8 \,{\mathrm e}^{\frac {1}{{\mathrm e}^{2}+3}}+24}\) | \(20\) |
meijerg | \(-\frac {1-{\mathrm e}^{2 x}}{2 \left (4 \,{\mathrm e}^{\frac {1}{{\mathrm e}^{2}+3}}+12\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 17, normalized size = 0.61 \begin {gather*} \frac {e^{\left (2 \, x\right )}}{8 \, {\left (e^{\left (\frac {1}{e^{2} + 3}\right )} + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 18, normalized size = 0.64 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}}{8\,{\mathrm {e}}^{\frac {1}{{\mathrm {e}}^2+3}}+24} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.54 \begin {gather*} \frac {e^{2 x}}{8 e^{\frac {1}{3 + e^{2}}} + 24} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________