Optimal. Leaf size=29 \[ x+\log \left (\left (x-\left (e^{e^{x (4-\log (x))} x}+x^2\right )^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-x+8 x^3+x^4+e^{2 e^{4 x-x \log (x)} x} \left (1+e^{4 x-x \log (x)} (4+12 x-4 x \log (x))\right )+e^{e^{4 x-x \log (x)} x} \left (8 x+2 x^2+e^{4 x-x \log (x)} \left (4 x^2+12 x^3-4 x^3 \log (x)\right )\right )}{e^{2 e^{4 x-x \log (x)} x}-x+2 e^{e^{4 x-x \log (x)} x} x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {e^{2 e^{4 x} x^{1-x}}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}-\frac {x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {8 e^{e^{4 x} x^{1-x}} x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {2 e^{e^{4 x} x^{1-x}} x^2}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {8 x^3}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {x^4}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {4 e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{-x} \left (e^{e^{4 x} x^{1-x}}+x^2\right ) (1+3 x-x \log (x))}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}\right ) \, dx\\ &=-\left (2 \int \frac {1}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\right )+2 \int \frac {e^{e^{4 x} x^{1-x}} x^2}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{-x} \left (e^{e^{4 x} x^{1-x}}+x^2\right ) (1+3 x-x \log (x))}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+8 \int \frac {e^{e^{4 x} x^{1-x}} x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+8 \int \frac {x^3}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {e^{2 e^{4 x} x^{1-x}}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-\int \frac {x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {x^4}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\\ &=-\left (2 \int \frac {1}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\right )+2 \int \frac {e^{e^{4 x} x^{1-x}} x^2}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \left (\frac {3 e^{e^{4 x} x^{1-x}+x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{1-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{2-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {3 e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}+\frac {e^{e^{4 x} x^{1-x}+x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}-\frac {e^{e^{4 x} x^{1-x}+x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{1-x} \log (x)}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}-\frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x} \log (x)}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4}\right ) \, dx+8 \int \frac {e^{e^{4 x} x^{1-x}} x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+8 \int \frac {x^3}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {e^{2 e^{4 x} x^{1-x}}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-\int \frac {x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {x^4}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\\ &=-\left (2 \int \frac {1}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\right )+2 \int \frac {e^{e^{4 x} x^{1-x}} x^2}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{2-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \frac {e^{e^{4 x} x^{1-x}+x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-4 \int \frac {e^{e^{4 x} x^{1-x}+x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{1-x} \log (x)}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-4 \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x} \log (x)}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+8 \int \frac {e^{e^{4 x} x^{1-x}} x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+8 \int \frac {x^3}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+12 \int \frac {e^{e^{4 x} x^{1-x}+x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{1-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+12 \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {e^{2 e^{4 x} x^{1-x}}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-\int \frac {x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {x^4}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\\ &=-\left (2 \int \frac {1}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\right )+2 \int \frac {e^{e^{4 x} x^{1-x}} x^2}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{2-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \frac {e^{2 x \left (2+e^{4 x} x^{-x}\right )} x^{-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+4 \int \frac {\int \frac {e^{2 x \left (2+e^{4 x} x^{-x}\right )} x^{1-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx}{x} \, dx+4 \int \frac {\int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx}{x} \, dx+8 \int \frac {e^{e^{4 x} x^{1-x}} x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+8 \int \frac {x^3}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+12 \int \frac {e^{2 x \left (2+e^{4 x} x^{-x}\right )} x^{1-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+12 \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-(4 \log (x)) \int \frac {e^{2 x \left (2+e^{4 x} x^{-x}\right )} x^{1-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-(4 \log (x)) \int \frac {e^{x^{1-x} \left (e^{4 x}+4 x^x\right )} x^{3-x}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {e^{2 e^{4 x} x^{1-x}}}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx-\int \frac {x}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx+\int \frac {x^4}{e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.97, size = 48, normalized size = 1.66 \begin {gather*} x+2 \log \left (e^{2 e^{4 x} x^{1-x}}-x+2 e^{e^{4 x} x^{1-x}} x^2+x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 44, normalized size = 1.52 \begin {gather*} x + 2 \, \log \left (x^{4} + 2 \, x^{2} e^{\left (x e^{\left (-x \log \relax (x) + 4 \, x\right )}\right )} - x + e^{\left (2 \, x e^{\left (-x \log \relax (x) + 4 \, x\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.95, size = 44, normalized size = 1.52 \begin {gather*} x + 2 \, \log \left (x^{4} + 2 \, x^{2} e^{\left (x e^{\left (-x \log \relax (x) + 4 \, x\right )}\right )} - x + e^{\left (2 \, x e^{\left (-x \log \relax (x) + 4 \, x\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 43, normalized size = 1.48
method | result | size |
risch | \(x +2 \ln \left ({\mathrm e}^{2 x \,x^{-x} {\mathrm e}^{4 x}}+2 x^{2} {\mathrm e}^{x \,x^{-x} {\mathrm e}^{4 x}}+x^{4}-x \right )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 44, normalized size = 1.52 \begin {gather*} x + 2 \, \log \left (x^{4} + 2 \, x^{2} e^{\left (x e^{\left (-x \log \relax (x) + 4 \, x\right )}\right )} - x + e^{\left (2 \, x e^{\left (-x \log \relax (x) + 4 \, x\right )}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 44, normalized size = 1.52 \begin {gather*} x+2\,\ln \left ({\mathrm {e}}^{2\,x^{1-x}\,{\mathrm {e}}^{4\,x}}-x+2\,x^2\,{\mathrm {e}}^{x^{1-x}\,{\mathrm {e}}^{4\,x}}+x^4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.80, size = 42, normalized size = 1.45 \begin {gather*} x + 2 \log {\left (x^{4} + 2 x^{2} e^{x e^{- x \log {\relax (x )} + 4 x}} - x + e^{2 x e^{- x \log {\relax (x )} + 4 x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________