Optimal. Leaf size=24 \[ 1+\frac {9}{64 x^4}-\log \left (\frac {4 x}{5+e^{2 x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.39, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 10, number of rules used = 8, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {6741, 12, 6742, 2282, 36, 29, 31, 14} \begin {gather*} \frac {9}{64 x^4}+\log \left (e^{2 x}+5\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 29
Rule 31
Rule 36
Rule 2282
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-45-80 x^4+e^{2 x} \left (-9-16 x^4+32 x^5\right )}{16 \left (5+e^{2 x}\right ) x^5} \, dx\\ &=\frac {1}{16} \int \frac {-45-80 x^4+e^{2 x} \left (-9-16 x^4+32 x^5\right )}{\left (5+e^{2 x}\right ) x^5} \, dx\\ &=\frac {1}{16} \int \left (-\frac {160}{5+e^{2 x}}+\frac {-9-16 x^4+32 x^5}{x^5}\right ) \, dx\\ &=\frac {1}{16} \int \frac {-9-16 x^4+32 x^5}{x^5} \, dx-10 \int \frac {1}{5+e^{2 x}} \, dx\\ &=\frac {1}{16} \int \left (32-\frac {9}{x^5}-\frac {16}{x}\right ) \, dx-5 \operatorname {Subst}\left (\int \frac {1}{x (5+x)} \, dx,x,e^{2 x}\right )\\ &=\frac {9}{64 x^4}+2 x-\log (x)-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x}\right )+\operatorname {Subst}\left (\int \frac {1}{5+x} \, dx,x,e^{2 x}\right )\\ &=\frac {9}{64 x^4}+\log \left (5+e^{2 x}\right )-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 26, normalized size = 1.08 \begin {gather*} \frac {1}{16} \left (\frac {9}{4 x^4}+16 \log \left (5+e^{2 x}\right )-16 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 26, normalized size = 1.08 \begin {gather*} -\frac {64 \, x^{4} \log \relax (x) - 64 \, x^{4} \log \left (e^{\left (2 \, x\right )} + 5\right ) - 9}{64 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 26, normalized size = 1.08 \begin {gather*} -\frac {64 \, x^{4} \log \relax (x) - 64 \, x^{4} \log \left (e^{\left (2 \, x\right )} + 5\right ) - 9}{64 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 18, normalized size = 0.75
method | result | size |
norman | \(\frac {9}{64 x^{4}}-\ln \relax (x )+\ln \left (5+{\mathrm e}^{2 x}\right )\) | \(18\) |
risch | \(\frac {9}{64 x^{4}}-\ln \relax (x )+\ln \left (5+{\mathrm e}^{2 x}\right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 17, normalized size = 0.71 \begin {gather*} \frac {9}{64 \, x^{4}} - \log \relax (x) + \log \left (e^{\left (2 \, x\right )} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 17, normalized size = 0.71 \begin {gather*} \ln \left ({\mathrm {e}}^{2\,x}+5\right )-\ln \relax (x)+\frac {9}{64\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.71 \begin {gather*} - \log {\relax (x )} + \log {\left (e^{2 x} + 5 \right )} + \frac {9}{64 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________